IEUA Sulfide Formation Sampling Campaign

Brian Pecson October 2012

Project overview

Problem statement

- Sulfide generated within Reach IVA of the brine line exceeding acceptable levels
 - Total sulfide (TS) limit: 5.0 mg/l
 - Dissolved sulfide (DS) limit: 0.5 mg/l
- Issues: sulfide hazardous for workers, malodorous

Project objectives

 Characterize sulfide formation in the brine line, with goal of using info to identify effective control strategies

Project Scope

Task 1

 Develop a sampling campaign to characterize sulfide formation in brine line

Task 2

 Discuss water quality issues and operational constraints with dischargers

Task 3

- Analyze results from sampling campaign
- Brief review of historical data

History of IEUA sulfide issues

2010

- Sulfide problems arise, though no direct discharger of sulfides
- Physical cleaning of the line resolves issue

2011

• Relined section with cured-in place piping (Oct to Mar 2012)

2012

- Sulfide issues arise again in Spring
- Again, no individual discharger of sulfides
- New RP-5 facility goes on-line

Potential causes of sulfide formations

- Biological growth
 - Requirements
 - 1. Sulfate-reducing bacteria (SRB)
 - 2. Energy source (e.g., BOD)
 - 3. Sulfate
 - 4. Absence of other electron acceptors (e.g., O₂, nitrate)
 - 5. Surface for attachment and development of biofilm?
 - Influence of new CIPP lining: a preferential surface for biofilm growth?
- Abiotic mechanisms: less common

Historical data

- Sulfide violations in 2012
 - TS: 39% of dates with at least one violation
 - DS: 77% of dates with at least one violation
- Location of violations
 - Never at any of the 4 dischargers
 - Occurs in blended flow with increasing likelihood as flow moves downstream
 - Sulfide compliance point particularly impacted

SAMPLING CAMPAIGN

•

 \bullet

•

6 sampling locations

- 1. CIM/OLS alone
- 2. Mission Linen
- 3. Blend of 1 & 2
- Blend of 1 & 2 4
- 5. RP-5 alone
- 6. Blend of all dischargers

SARI Line 2006: Reach IVA

San Bernardino Count

390 (262+00.00)

Flow patterns in Reach IVA

Mission Linen: major contributor during the day CIM/OLS: ~constant flowrate 24/7 RP-5: minor contributor during the day

Flow summary

Site	Flow pattern	% of daily flow*
CIM/OLS	 Constant 24/7 140 gpm 	49%
Mission Linen	 On/off over 24h Mon-Fri w/ limited flows Sat-Sun ~240 gpm on 140 gpm avg. 	49%
RP-5	 On/off over 24h Mon-Fri only ~20 gpm on 6 gpm avg. 	2%
* Based on ave	erage Mon-Fri flows	

Sampling campaign overview

- Measured the following parameters:
 - pH
 - Temperature
 - Dissolved oxygen (DO)
 - Sulfate
 - Alkalinity
 - Nitrate
 - BOD

Biological growth + Energy

- Energy generated by bacteria is a good predictor of who will be present
 - More energy created \rightarrow higher chance of survival
- Energy ladder (assuming BOD as food source):
 - Oxygen (aerobic) highest
 - Nitrate (anoxic) high
 - Sulfate (anaerobic) low

Biological growth + Energy

- Energy generated by bacteria is a good predictor of fitness
 - More energy created \rightarrow higher chance of survival
- Energy ladder (assuming BOD as food source):
 - Oxygen (aerobic) highest
 - Nitrate (anoxic) high
 - Sulfate (anaerobic) low

gens

H₂0

Aerobic and nitrate-reducing bacteria should out-compete \rightarrow NO sulfide formation in presence of O₂ and nitrate

Methanic

Water quality: pH, temp, DO

- Findings:
 - Mission significantly different (high pH, high temp)
 - DO present in all discharges at all testing periods

Water quality: sulfate and nitrate

Water quality: sulfate and nitrate

- Findings:
 - CIM/OLS dominate both sulfate and nitrate inputs (>80%)
 - Alkalinity more evenly distributed

Water quality: BOD

- Findings:
 - Mission Linen dominant source of BOD (>90%)
 - But...ML only inputting around 10-12 h per day...

Water quality and flow summary

Site	Flow pattern	% of daily flow*	Average WQ	Main source of:
CIM/OLS	 Constant 24/7 140 gpm 	49%	pH 7.2 Temp: 26C DO > 2.5 mg/l	- SO ₄ ²⁻ - NO ₃ ²⁻
Mission Linen	 On/off over 24h 7 days/wk ~240 gpm on 140 gpm avg. 	49%	pH 8.9 Temp: 37C DO > 4.2 mg/l	- BOD
RP-5	 On/off over 24h Mon-Fri ~20 gpm on 6 gpm avg. 	2%	pH 8.3 Temp: 31C DO > 0.9 mg/l	8
* Based o				
* Based c				

SULFIDE FORMATION

Sulfide violations

- Of the 77 samples collected during the campaign:
 - 5 TS violations
 - 10 DS violations
- Working hypothesis: SRB consume BOD with sulfate to generate sulfide
 - Significant mechanism only if O2, nitrate used up
 - Look at relationship between O2, nitrate, and sulfide
 - Should only occur in presence of BOD
 - Look at relationship between BOD and sulfide

Total Sulfide violations

 TS violations occur only when both DO and nitrate are low

Dissolved Sulfide violations

 DS violations occur only when both DO and nitrate are low

Dissolved Sulfide violations

 DS violations occur only when both DO and nitrate are low

Conclusions:

1000

- Sulfide violations only occur under low DO, nitrate conditions
- But, sulfide not directly released by any dischargers
- Therefore, sulfide generated within the blended flows

Where in line are sulfide violations taking place? Where are DO and nitrate limiting?

DO, nitrate in blended flows

• Site 3: upstream blend CIM/OLS & Mission Linen

DO, nitrate in blended flows

Site 4: downstream blend CIM/OLS & Mission
Linen

DO, nitrate in blended flows

• Site 6: downstream blend of all discharges (compliance point for sulfide)

DS violations in blended flows

Location of sulfide violations

• Violations occur only at downstream sites 4 and 6

Location of sulfide violations

• Violations occur only at downstream sites 4 and 6

Potential sulfide violations

• <u>Near violations</u>: (1) DO < 1 mg/L, (2) NO_3^{2-} < 20 mg/L

Potential sulfide violations

• <u>Near violations</u>: (1) DO < 1 mg/L, (2) NO_3^{2-} < 20 mg/L

Conclusions:

- As DO & nitrate used up, sulfide generation appears
- Sulfide formation therefore more likely downstream
- DS violations occurred in 1/3rd of the samples at Site 6
- WQ suggests potential for violations in 2/3rds of samples

Impact of BOD on sulfide

- Main BOD source: Mission Linen = 90% of BOD
 - BOD in blended flow with Mission Linen: ~200 mg/L
 - BOD without Mission Linen: ~45 mg/L
- Sulfide formation in absence of ML flows
 - Early morning flows and weekend flows
 - No sulfide violations in absence of ML
- Sulfide formation with ML flows
 - Violations in 6 of 10 events when ML flowing

- Requirements (from intro):
 - 1. Sulfate-reducing bacteria
 - 2. Energy source (e.g., BOD)
 - 3. Sulfate
 - 4. Absence of other electron acceptors (e.g., O₂, nitrate)
 - 5. Surface for attachment and development of biofilm?

- Requirements (from intro):
 - 1. Sulfate-reducing bacteria
 - Biological analysis not included in sampling campaign
 - 2. Energy source (e.g., BOD)
 - 3. Sulfate
 - 4. Absence of other electron acceptors (e.g., O₂, nitrate)
 - 5. Surface for attachment and development of biofilm?

- Requirements (from intro):
 - 1. Sulfate-reducing bacteria
 - Biological analysis not included in sampling campaign
 - 2. Energy source (e.g., BOD)
 - Sulfide only generated in blended water with high BOD
 - 3. Sulfate
 - 4. Absence of other electron acceptors (e.g., O₂, nitrate)
 - 5. Surface for attachment and development of biofilm?

- Requirements (from intro):
 - 1. Sulfate-reducing bacteria
 - Biological analysis not included in sampling campaign
 - 2. Energy source (e.g., BOD)
 - Sulfide only generated in blended water with high BOD
 - 3. Sulfate
 - High concentration of sulfate in blended flows (>600 mg/L)
 - 4. Absence of other electron acceptors (e.g., O₂, nitrate)
 - 5. Surface for attachment and development of biofilm?

- Requirements (from intro):
 - 1. Sulfate-reducing bacteria
 - Biological analysis not included in sampling campaign
 - 2. Energy source (e.g., BOD)
 - Sulfide only generated in blended water with high BOD
 - 3. Sulfate
 - High concentration of sulfate in blended flows (>600 mg/L)
 - 4. Absence of other electron acceptors (e.g., O₂, nitrate)
 - Only see sulfide issues in low-O₂, low-nitrate waters
 - 5. Surface for attachment and development of biofilm?

- Requirements (from intro):
 - 1. Sulfate-reducing bacteria
 - Biological analysis not included in sampling campaign
 - 2. Energy source (e.g., BOD)
 - Sulfide only generated in blended water with high BOD
 - 3. Sulfate
 - High concentration of sulfate in blended flows (>600 mg/L)
 - 4. Absence of other electron acceptors (e.g., O₂, nitrate)
 - Only see sulfide issues in low-O₂, low-nitrate waters
 - 5. Surface for attachment and development of biofilm?
 - No literature references to *preferential* CIPP growth

- Requirements (from intro):
 - 1. Sulfate-reducing bacteria
 - Biological analysis not included in sampling campaign
 - 2. Energy source (e.g., BOD)
 - Sulfide only generated in blended water with high BOD
 - 3. Sulfate
 - High concentration of sulfate in blended flows (>600 mg/L)
 - 4. Absence of other electron acceptors (e.g., O₂, nitrate)
 - Only see sulfide issues in low-O₂, low-nitrate waters
 - 5. Surface for attachment and development of biofilm?
 - No literature references to preferential CIPP growth

Conclusions

- What causes sulfide formation?
 - BOD
 - Sulfate
 - Absence of electron acceptors
 - Temperature?
- All of these factors need to be satisfied
- No one discharger alone adds all of these components
- Problem is the result of <u>blended</u> flows

Conclusions

	Worst-case	CIM/OLS	Mission Linen	RP-5		
Factors favoring sulfide development						
High BOD	 		~	 		
Sulfate	 ✓ 	>		 ✓ 		
High temperature?	~		~			
Factors limiting sulfide development						
DO		~	 ✓ 	~		
Nitrate		~		9		
				-		

CIM

Current configuration

- CIM is sole source of BOD in CIM/OLS blended flow
- BOD source: citric acid (control of precipitation)

Expected changes

- Planning to switch from citric to nitric acid
 - Reduces BOD loading in line
 - Adds an additional electron acceptor (nitrate)
- Earlier nitric acid spill \rightarrow no sulfide formation
 - Resolved problem for ~days, not weeks

Mission Linen

- Discharge schedule
 - Monday Friday: 5 a.m. to 10:30 p.m.
 - Saturday Sunday: 5 a.m. to 1:30 p.m.
 - Overtime: rare, potentially additional 1 h (beginning or end)
 - Definite periods when zero flow from Mission Linen
- No pattern of material to be washed
- FeCl₃ tank present on-site, but unused

Next Steps

- Select control strategies for evaluation
- Develop costs and feasibility of alternative strategies
- Select and implement preferred alternative
- Perform sampling campaign to monitor sulfide control

- Three main categories for chemical/biological options
 - Increasing redox potential
 - Inhibition of sulfate-reducing bacteria
 - Chemical removal of sulfide

- Three main categories for chemical/biological options
 - Increasing redox potential
 - Alternatives: add DO, nitrate, etc.
 - Evaluate dosing requirements, costs
 - Inhibition of sulfate-reducing bacteria
 - Chemical removal of sulfide

- Three main categories for chemical/biological options
 - Increasing redox potential
 - Inhibition of sulfate-reducing bacteria (two main options)
 - pH adjustment: shock treatment
 - Inhibit / eliminate SRB populations: biocides, chlorine
 - Chemical removal of sulfide

- Three main categories for chemical/biological options
 - Increasing redox potential
 - Inhibition of sulfate-reducing bacteria
 - Chemical removal of sulfide (two main options)
 - Precipitation by metal salts
 - Addition of oxidizing chemicals (H₂O₂, chlorine, permanganate)

