# **PFAS -Aquatic Toxicology Data Overview**



**Presentation to the Santa Ana River Emerging Contaminants** Task Force

January 22, 2024

**Chris Stransky** Environmental Scientist, Aquatic Sciences & Toxicology Group WSP USA, San Diego, CA <u>chris.stransky@wsp.com</u> 858-775-5547

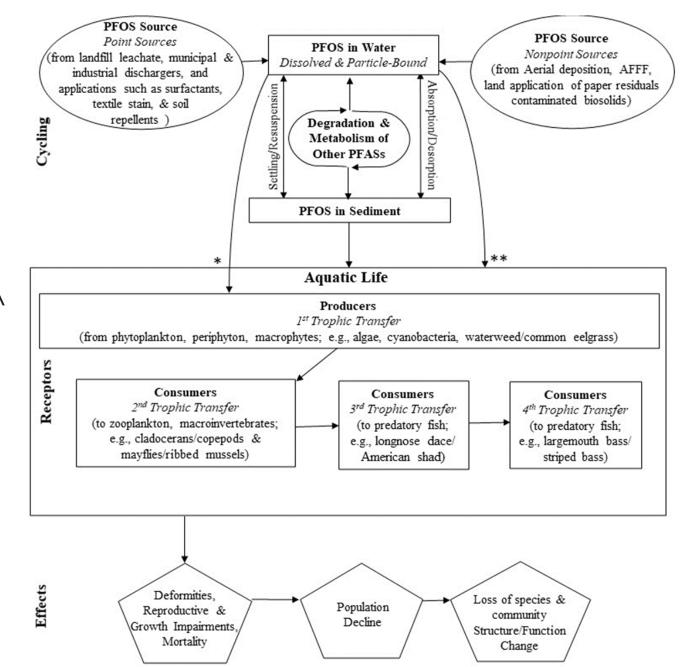


# Outline



- 1. Overview of Ecotoxicity of PFAS
- 2. USEPA 2022 Draft Ambient Water Quality Criteria for PFOS and PFOA
- 3. Tissue Monitoring Programs and Objectives for Ecological and Human Health Risk
- 4. SoCal Regional Bight Monitoring




#### **Introduction – PFAS Effects**

- Over 3,000 PFAS compounds on the global market.
- PFOS and PFOA (breakdown chemicals from precursors) among the most studied due to their prevalence and toxicity.
- Underlying mechanisms of PFOA toxicity to aquatic animals, and fish in particular, appear to be related to oxidative stress, apoptosis, thyroid disruption, and development-related gene expression
- Causing reproductive failure, effects on growth, developmental toxicity; androgen, estrogen and thyroid hormone disruption; immune system disruption; and neuronal and developmental damage.

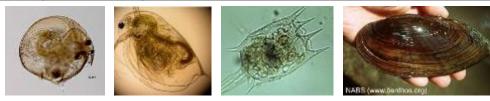
#### **Conceptual Model**

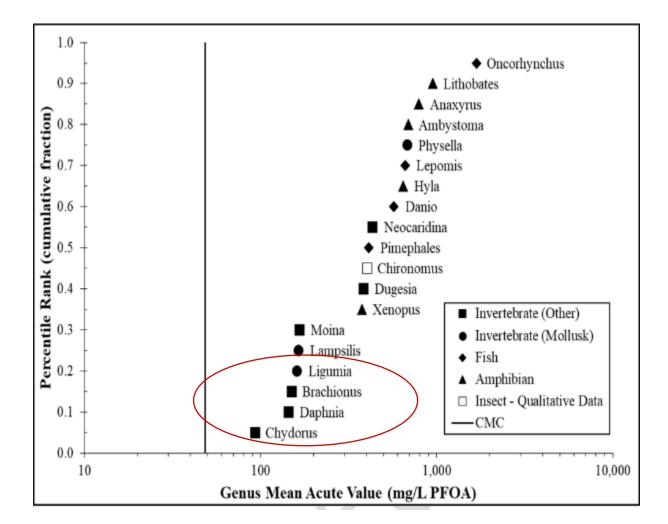
Conceptual Model Diagram of Sources, Compartmental Partitioning, and Trophic Transfer Pathways of PFOA and PFOS in the Aquatic Environment and its **Bioaccumulation and** Effects in Aquatic Life and Aquatic-dependent Wildlife

> From EPA 2022 EPA-842-D-22-002



# Summary of Assessment Endpoints and Measures of Effect Used in the Criteria Derivation for Aquatic Life


| Assessment Endpoints for the<br>Aquatic Community                                                                                                               | Measures of Effect                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Aquatic Life:<br>Survival, growth, and<br>reproduction of freshwater<br>and estuarine/marine aquatic<br>life (i.e., fish, amphibians,<br>aquatic invertebrates) | <ul> <li>For effects from Acute exposure (short term):</li> <li>1. LC50, EC50, or IC50 concentrations in water</li> <li>2. NOEC and LOEC concentrations in water</li> <li>For effects from Chronic exposure (longer term, sublethal):</li> <li>1. EC10 concentrations in water</li> <li>2. NOEC and LOEC concentrations in water; Only used when an EC10 could not be calculated for a genus.</li> </ul> |  |  |


NOEC = No observed effect concentration, LOEC = Lowest observed effect concentration LC, EC, or IC50 = Median lethal, effect, or inhibition concentration.  $EC_{10} = 10\%$  Effect Concentration

#### **Most Sensitive Freshwater Species to PFOA - Acute**

The Four Most Sensitive Genera used to Calc. the Acute Freshwater Criterion (PFOA)

| Rank | Genus      | Species                                                                                                                           | GMAV<br>(mg/L) |
|------|------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1    | Chydorus   | Cladoceran<br>( <i>Chydorus sphaericus</i> )                                                                                      | 93.2           |
| 2    | Daphnia    | Cladoceran<br>( <i>Daphnia carinata</i> )<br>Cladoceran<br>( <i>Daphnia magna</i> )<br>Cladoceran<br>( <i>Daphnia pulicaria</i> ) | 144            |
| 3    | Brachionus | Rotifer<br>(Brachionus calyciflorus)                                                                                              | 150            |
| 4    | Ligumia    | Black sandshell mussel<br>( <i>Ligumia recta</i> )                                                                                | 161            |





Photos 1-3. Univ of New Hampshire Image-Based Key To The Zooplankton of North America. <u>http://cfb.unh.edu/cfbkey/html/index.html</u> Photo 4 Montana Field Guide - <u>https://fieldguide.mt.gov/speciesDetail.aspx?elcode=IMBIV26020</u>

#### **Most Sensitive Freshwater Species to PFOA - Chronic**

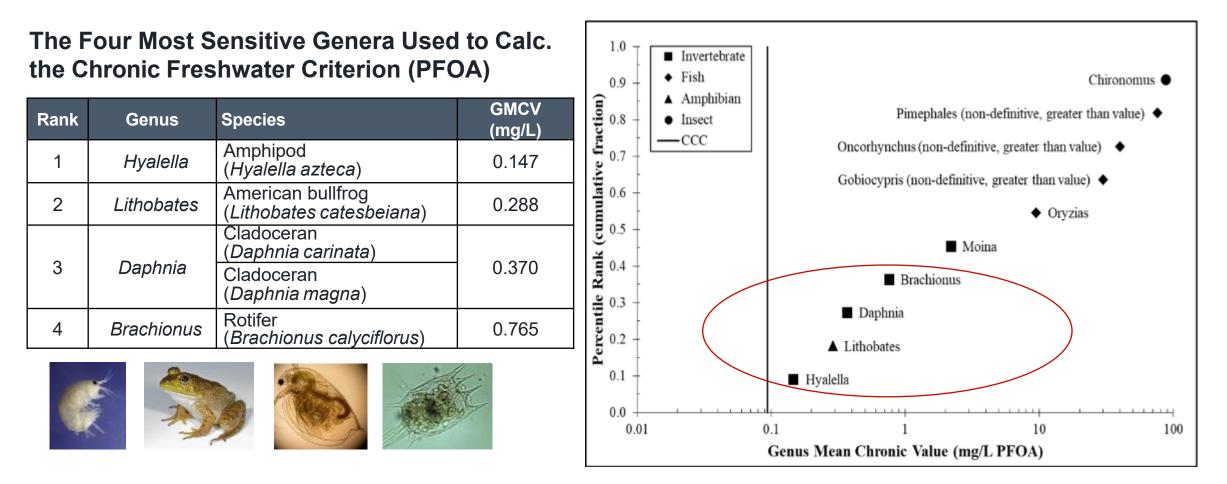
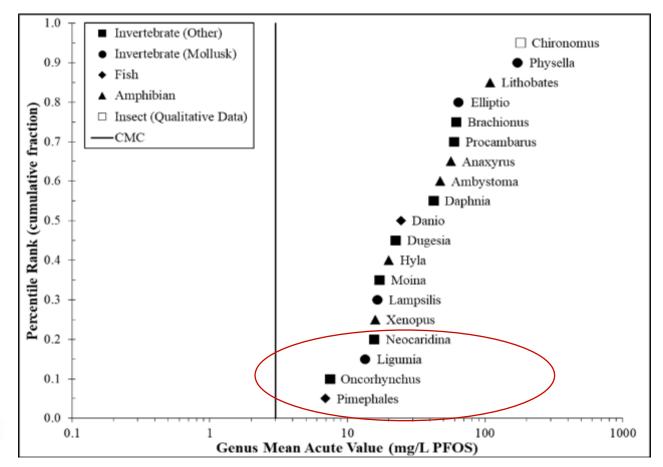




 Photo 1. Field Guide to Freshwater Invertebrates of North America, 2011. J.H. Thorp and D.C. Rogers. <a href="https://www.sciencedirect.com/book/9780123814265/field-guide-to-freshwater-invertebrates-of-north-america">https://www.sciencedirect.com/book/9780123814265/field-guide-to-freshwater-invertebrates-of-north-america</a> Photo 2. i-Naturalist. Photo 13302641, (c) eggimann.com. <a href="https://www.inaturalist.org/photos/13302641">https://www.inaturalist.org/photos/13302641</a> Photos 3-4. Univ of New Hampshire Image-Based Key To The Zooplankton of North America. <a href="http://cfb.unh.edu/cfbkey/html/index.html">http://cfb.unh.edu/cfbkey/html/index.html</a>

#### **Most Sensitive Freshwater Species to PFOS - Acute**

The Five Most Sensitive Genera used to Calc the Acute Freshwater Criterion (PFOS)

| Genus        | Species                                                      | GMAV<br>(mg/L) <sup>1</sup>                                                                                                                                                                                         |
|--------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pimephales   | Fathead minnow,<br><i>P. promelas</i>                        | 6.95                                                                                                                                                                                                                |
| Oncorhynchus | Rainbow trout,<br><i>O. mykiss</i>                           | 7.52                                                                                                                                                                                                                |
| Ligumia      | Black sandshell<br>mussel ( <i>Ligumia</i><br><i>recta</i> ) | 13.5                                                                                                                                                                                                                |
| Neocaridina  | Japanese swamp<br>shrimp,<br><i>N. denticulata</i>           | 15.6                                                                                                                                                                                                                |
| Xenopus      | African clawed frog,<br><i>X. laevis</i>                     | 16.0                                                                                                                                                                                                                |
|              | Pimephales<br>Oncorhynchus<br>Ligumia<br>Neocaridina         | PimephalesFathead minnow,<br>P. promelasOncorhynchusRainbow trout,<br>O. mykissLigumiaBlack sandshell<br>mussel (Ligumia<br>recta)NeocaridinaJapanese swamp<br>shrimp,<br>N. denticulataXenonusAfrican clawed frog, |



**Photos 1 and 2.** Jacobs, R. P., O'Donnell, E. B., and Connecticut DEEP. (2009). A Pictorial Guide to Freshwater Fishes of Connecticut. Hartford, CT. <u>https://portal.ct.gov/DEEP/Fishing/Freshwater/Freshwater-Fishes-of-Connecticut/Fathead-Minnow</u>

Photo 3. Montana Field Guide - https://fieldguide.mt.gov/speciesDetail.aspx?elcode=IMBIV26020

Photo 4. i-Naturalist. http://commons.wikimedia.org/wiki/File:Neocaridina\_denticulata\_denticulata(Hamamatsu,Shizuoka,Japan,2007).jpg

Photo 5. WA Dept of Fish and Wildlife. Photo by Brian Gratwick. https://wdfw.wa.gov/species-habitats/invasive/xenopus-laevis

wsp

#### **Most Sensitive Freshwater Species to PFOS - Chronic**

# The Four Most Sensitive Genera used to Calc the Chronic Freshwater Criterion (PFOS)

| Rank | Genus      | Species                                              | GMCV<br>(mg/L<br>PFOS) <sup>1</sup> | GMCV<br>(µg/L<br>PFOS) <sup>1</sup> |
|------|------------|------------------------------------------------------|-------------------------------------|-------------------------------------|
| 1    | Chironomus | Midge,<br><i>Chironomus</i><br><i>dilutus</i>        | 0.00968                             | 9.68                                |
| 2    | Lampsilis  | Fatmucket,<br><i>Lampsilis</i><br><i>siliquoidea</i> | 0.01768                             | 17.68                               |
| 3    | Enallagma  | Blue damselfly,<br>Enallagma<br>cyathigerum          | 0.03162                             | 31.62                               |
| 4    | Danio      | Zebrafish,<br><i>Danio rerio</i>                     | 0.03217                             | 32.17                               |



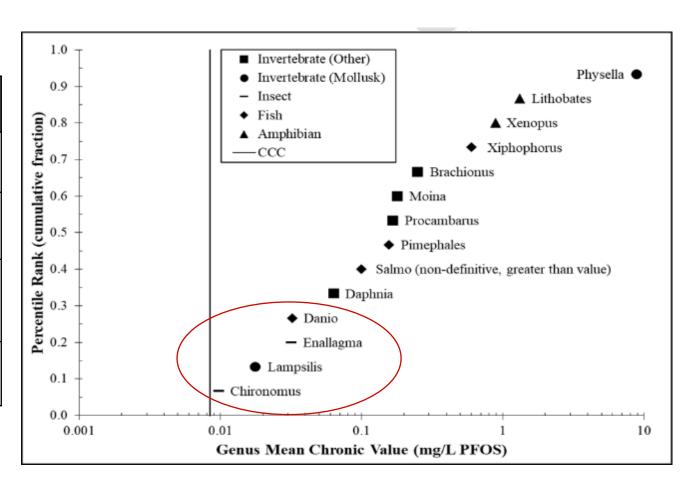



Photo 1. N. Carolina State Univ. Extension. <u>https://content.ces.ncsu.edu/biology-and-control-of-non-biting-aquatic-midges</u>
 Photo 2. i-Naturalist. Photo by Jesse Weinzinger. <u>https://inaturalist.ca/taxa/125545-Lampsilis-siliquoidea</u>

9 **Photo 3.** i-Naturalist. Photo by Fabrice Prugnaud. <u>https://inaturalist.ca/photos/79614657</u>

Photo 4. i-Naturalist. Photo by Tohru Murakami. https://inaturalist.ca/taxa/49977-Danio-rerio

#### **Most Sensitive Marine Species to PFOA - Acute**

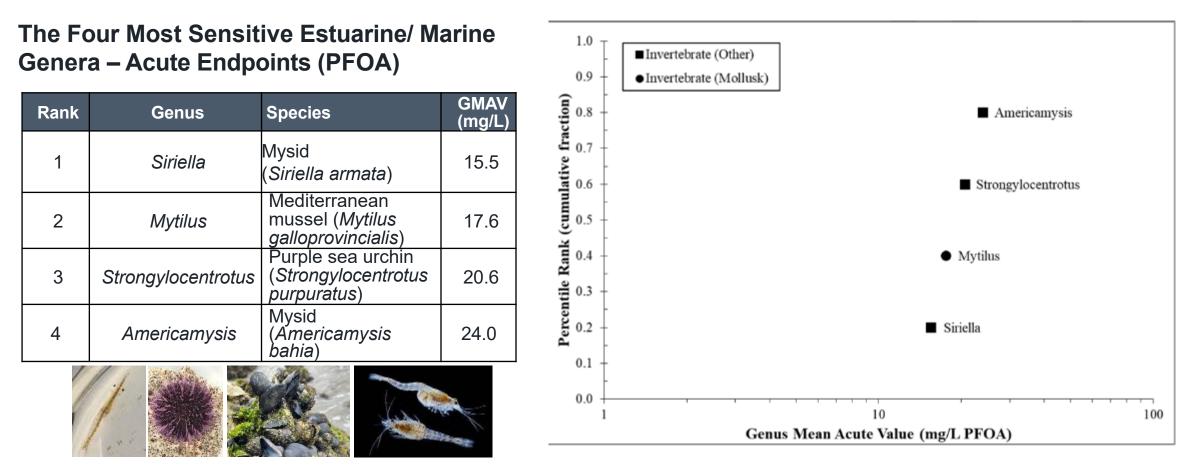



Photo 1. i-Naturalist. Photo by Przese. <u>https://inaturalist.ca/photos/113992514</u>
 Photos 2 and 3. Chris Stransky, WSP USA
 Photo 4. US EPA. https://www.epa.gov/sites/default/files/2017-01/documents/sop-for-mysid-analysis-201502-24pp.pdf

wsp

#### **Most Sensitive Marine Species to PFOS -**

**Acute** The Four Most Sensitive Estuarine/ Marine Genera – Acute Endpoints (PFOS)

| Rank | Genus              | Species                                              | GMAV<br>(mg/L<br>PFOS) |
|------|--------------------|------------------------------------------------------|------------------------|
| 1    | Mytilus            | Mediterranean mussel,<br><i>M. galloprovincialis</i> | 1.1                    |
| 2    | Strongylocentrotus | Purple sea urchin,<br><i>S. purpuratus</i>           | 1.7                    |
| 3    | Paracentrotus      | Sea urchin, <i>P. lividus</i>                        | 1.80                   |
| 4    | Americamysis       | Mysid, <i>A. bahia</i>                               | 4.91                   |



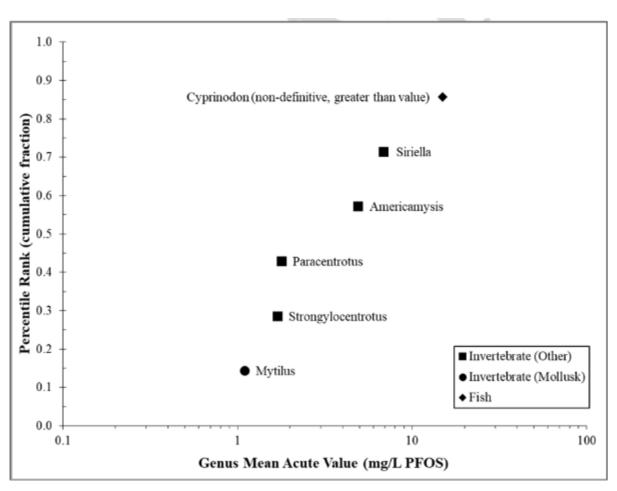



Photo 1 and 2. Photos 2 and 3. Chris Stransky, WSP USA
Photo 3. i-Naturalist. Photo by Emanuele Santarelli. <u>https://www.inaturalist.org/taxa/48032-Paracentrotus-lividus</u>
Photo 4. US EPA. <u>https://www.epa.gov/sites/default/files/2017-01/documents/sop-for-mysid-analysis-201502-24pp.pdf</u>

#### **Most Sensitive Marine Species to PFOS - Chronic**

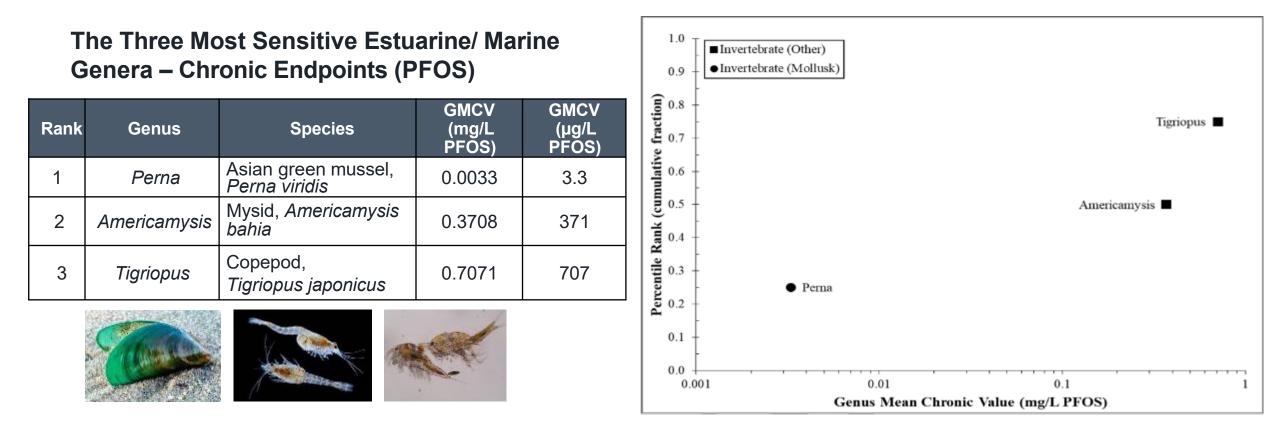



Photo 1. i-Naturalist. Photo by: khuemer. <u>https://www.inaturalist.org/taxa/199358-Perna-viridis/browse\_photos</u>
Photo 2. US EPA. <u>https://www.epa.gov/sites/default/files/2017-01/documents/sop-for-mysid-analysis-201502-24pp.pdf</u>
Photo 3. Wikipedia open source photo. <u>https://en.m.wikipedia.org/wiki/File:Tigriopus\_sp\_japonicus\_pair.jpg</u>

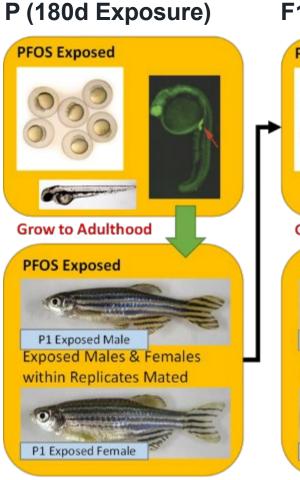
### US EPA Draft Recommended Freshwater Aquatic Life Water Quality Criteria for PFOA and PFOS (April

| Criteria<br>Component | Acute Water<br>Column (CMC) <sup>1</sup>                              | Chronic Water<br>Column (CCC) <sup>2</sup>                            | Invertebrate<br>Whole-Body                                    | Fish Whole-<br>Body | Fish Muscle       |
|-----------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|---------------------|-------------------|
| PFOA<br>Magnitude     | 49,000 μg/L                                                           | 94 μg/L                                                               | 1.11<br>mg/kg ww                                              | 6.10<br>mg/kg ww    | 0.125<br>mg/kg ww |
| PFOS<br>Magnitude     | 3,000 μg/L                                                            | 8.4 μg/L                                                              | 0.937<br>mg/kg ww                                             | 6.75<br>mg/kg ww    | 2.91<br>mg/kg ww  |
| Duration              | 1-hour average                                                        | 4-day average                                                         | Instantaneous <sup>3</sup>                                    |                     |                   |
| Frequency             | Not to be<br>exceeded more<br>than once in three<br>years, on average | Not to be<br>exceeded more<br>than once in three<br>years, on average | Not to be exceeded more than once in ten<br>years, on average |                     | once in ten       |

<sup>1</sup> Criterion Maximum Concentration. <sup>2</sup> Criterion Continuous Concentration.

<sup>3</sup> Tissue data provide instantaneous point measurements that reflect integrative accumulation of PFOA or PFOS over time and space in aquatic life population(s) at a given site.

\*EPA's Proposed drinking water Maximum Contaminant Level (MCL) = 4.0 parts per trillion (ng/L) or 0.004 µg/L. <u>https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas</u>


#### A Multigenerational Zebrafish PFOS Exposure-Response Study (Gust et al., 2023)

- Study performed in follow up to a prior publication by Keiter et. al. (2012) that reported reduced growth of zebrafish at 0.734 µg/L (ppb) from 30 to 180 days post fertilization.
- Another study reported a no observed effect concentration (NOEC) of 50 µg/L for reproduction (Wang et al 2012).
- This 1 paper led to EPA in Victoria, Australia to apply the 0.734 µg/L value to derive ambient water quality criteria for PFOS. US EPA did not use this value due to limitations in the study design and lack of dose-response relationships.
- The study was thus repeated by Gust et al., with a more robust design.

**Gust et al., 2023.** Survival, Growth, and Reproduction Responses in a Three-Generation Exposure of the Zebrafish (Danio rerio) to Perfluorooctane Sulfonate. Environ. Toxicol. and Chemistry. Vol 43 (No 1), January 2024, Pp 115-131.

**\\S**D

#### A Multigenerational Zebrafish PFOS Exposure-Response Study Conceptual Overview

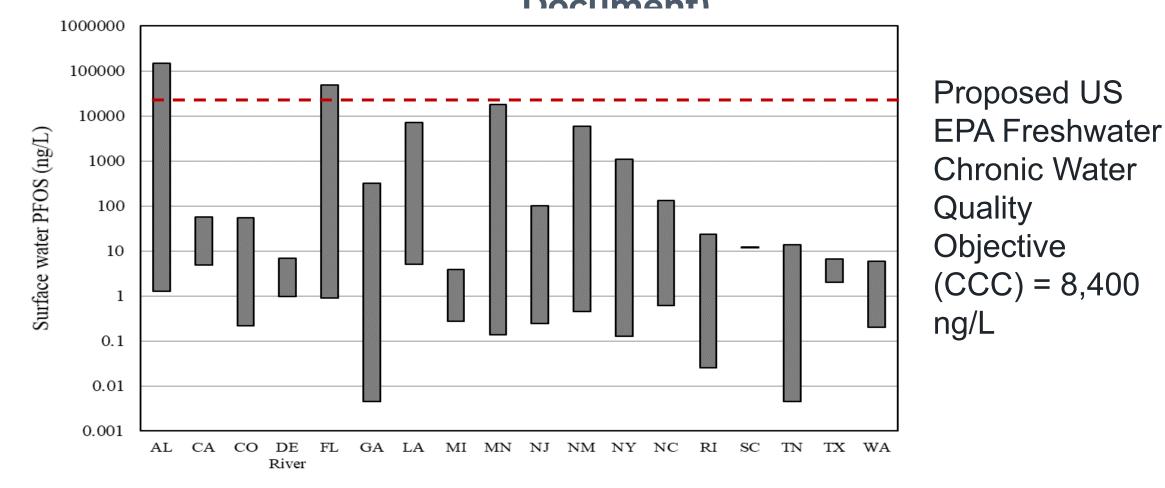






**Gust et al., 2023.** Survival, Growth, and Reproduction Responses in a Three-Generation Exposure of the Zebrafish (Danio rerio) to Perfluorooctane Sulfonate. Environ. Toxicol. and Chemistry. Vol 43 (No 1), January 2024, Pp 115-131.

#### Results from a Multigenerational Zebrafish PFOS Exposure-Response Study (Gust et al., 2023)

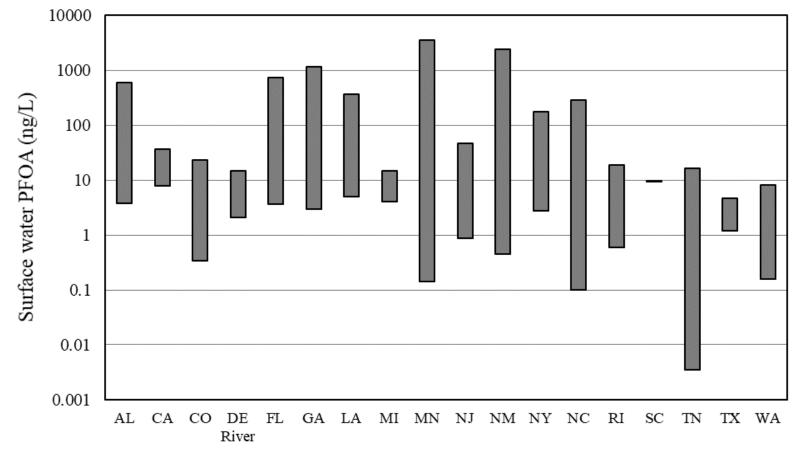

- Survival reduced on days 10-15 at <u>100 µg/L</u> in P generation and at day 16 in the F2 generation, but not statistically significant
- Some indication of reduced growth at <u>100 µg/L</u> (LOEC), but no effects 20 ppb and lower, contrary to growth reductions at <u>0.6 µg/L</u> reported in Keiter et al. (2012).
- No statistically significant effect on either egg production or viability relative to controls through 8 reproductive trials
- No indication of vitellogenin (VTG) production in male fish
- Ecologically relevant adverse effects threshold for zebrafish = <u>117 µg/L</u> for survival and <u>47 µg/L</u> for all endpoints evaluated. (using EPA water quality development guidelines to derive a Species Mean Chronic Value (SPCV)

#### Environmental Concentrations of PFOS in Surface Waters

- Data review of 90% of sites in the U.S. (impacted and unimpacted) have PFOS values of < 0.2 µg/L (ppb), with a range of 0.00016 to 8,970 µg/L. Median = 0.0055 µg/L (Jarvis et al., 2021)
- Survey of water quality concentrations associated with U.S. Air Force bases with a history of using fire-fighting foams containing PFOS (256 sites across 85 installation) report a mean concentration on <u>0.25 µg/L</u> with 75<sup>th</sup> and 95<sup>th</sup> percentiles of <u>1.2 and 12.9 µg/L</u> (East et al., 2021)

#### **Concentrations of PFOS Measured in U.S. Surface** Waters

## (US EPA 2022 Draft Aquatic Life Ambient WQO




Minimum and Maximum Concentrations (ng/L)

**NSD** 

#### **Concentrations of PFOA Measured in U.S. Surface** Waters

(US EPA 2022 Draft Aquatic Life Ambient WQO Document)



Proposed US EPA Freshwater Chronic Water Quality Objective (CCC) = 94,000 ng/L

Minimum and Maximum Concentrations (ng/L)

#### Human Health Fish Tissue Guidelines for PFAS

- Currently 8 states have developed consumption risk guidelines for PFAS with New Jersey and Minnesota having the most conservative values.
- No State of CA guidance for the consumption of fish based on PFAS
- State thresholds vary because they may include not only an analysis of risk from the contaminant, but often also a riskbenefit analysis balancing toxicity of the contaminant with the known benefits of consuming fish. Thresholds may also vary because they evaluate different studies and endpoints or use different factors and assumptions (e.g., body weight and consumption rate).
- USEPA human health fish tissue benchmark of 68 ppb ww PFOS

# Human Health Fish Tissue Guidelines – New

New Jersey developed fish consumption triggers using the **Reference Doses** for previously developed for use in drinking water and ground water standards.

PFOA (2 ng/kg/day; NJDWQI, 2017),

PFOS (1.8 ng/kg/day; NJDWQI, 2018), and

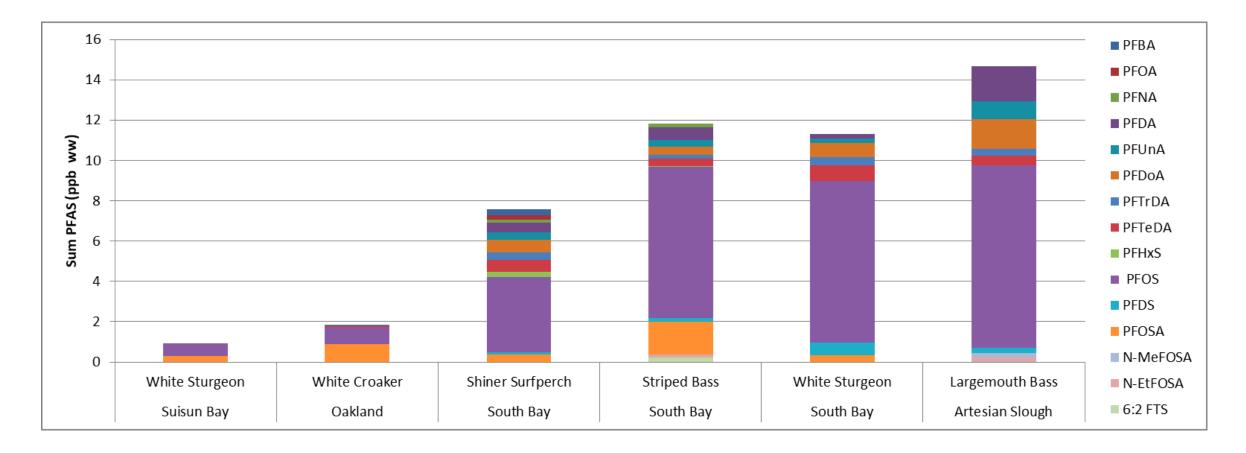
PFNA (0.74 ng/kg/day; NJDEP, 2017)

|               | General Population (ng/g; ppb) |             |        |  |
|---------------|--------------------------------|-------------|--------|--|
|               | PFOA PFNA PFOS                 |             |        |  |
| Unlimited     | ≤ 0.62                         | ≤ 0.23      | ≤ 0.56 |  |
| Weekly        | ≤ 4.3                          | ≤ 1.6       | ≤ 3.9  |  |
| Monthly       | ≤ 18.6                         | ≤ 6.9       | ≤ 17   |  |
| Once/3 months | ≤ 57                           | ≤ 21        | ≤ 51   |  |
| Yearly        | ≤ 226                          | <u>≤</u> 84 | ≤ 204  |  |
| Do Not Eat    | >226                           | > 84        | > 204  |  |

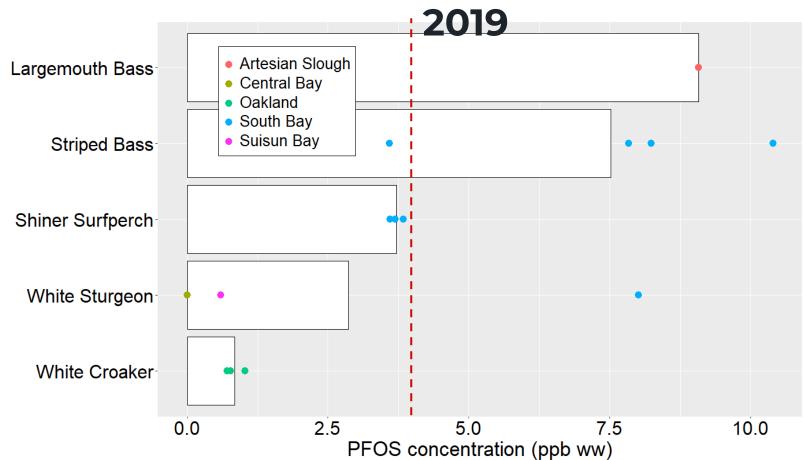
Daily trigger concentration  $\left(\frac{\text{ng}}{\text{g}}\right) = \frac{\text{RfD} (ng/kg/day) \times \text{Body Weight (kg)}}{\text{Meal size (g)}}$ 

- Where body weight= 70 kg and meal size is 227 g
- For consumption triggers that are less than daily, the triggers are multiplied by the appropriate timeframe

#### Human Health Fish Tissue Guidelines -Minnesota


| Meal Frequency   | PFOS<br>(ng/g; ppb) |
|------------------|---------------------|
| Unlimited        | <u>&lt;</u> 10      |
| 2 meals per wk   | 10-20               |
| 1 meal per wk    | 20-50               |
| 1 meal per month | 50-200              |
| Do Not Eat       | >200                |








#### Sum of PFAS Concentrations and Analyte Contributions in San Francisco Bay Fish, 2019



#### **PFOS Concentrations in San Francisco Bay Fish,**



Human Health Guidance: Threshold shown is from New Jersey: general population, one serving/week - 3.9 ppb ww. USEPA 2020 fish tissue benchmark = 68 ppb ww
 EcoRisk Guidance (USEPA 2022 Proposed): 2,910 ppb ww (filet), 6,750 ppb ww (whole body)

# PFAS Concentrations in Freshwater Lakes and Streams USEPA National Condition Assessment Program 501 composite samples comprising 1,968 individual fish representing

- 501 composite samples comprising 1,968 individual fish representing 44 species total.
- Most frequent species:
  - o Channel catfish (Ictalurus punctatus),
  - Smallmouth bass (*Micropterus dolomieu*),
  - Largemouth bass (*Micropterus salmoides*),
  - Yellow perch (*Perca flavescens*), and
  - Walleye (Sander vitreus)
- Median summed PFAS in U.S streams and rivers 9.5 ppb. 74% is PFOS (6.6 ppb).
- Median summed PFAS in Great Lakes fish = 17.8 ppb. PFOS = 12.35 ppb

#### The Southern CA Bight Regional Monitoring Program

Regional Monitoring Program every 5 years starting in 1993 managed by the Southern California Coastal Water Research Project (SCCWRP). Planning efforts currently underway for 2023.

- 1. What is the extent and magnitude of sediment quality impacts in the southern California Bight?
- 2. How does the extent and magnitude of sediment quality impacts vary over time in the southern California Bight?
- 3. What is the extent and magnitude of bioaccumulation of select contaminants in seafood in the southern California Bight?

## Southern CA Regional Bight Monitoring Program – Bight '23

- Sediment samples collected at ~166 locations offshore and within bays and estuaries are undergoing analysis of PFAS compounds.
- Fish tissues analysis of PFAS compounds in ~50 samples from the San Diego Regional Harbor Monitoring Program.







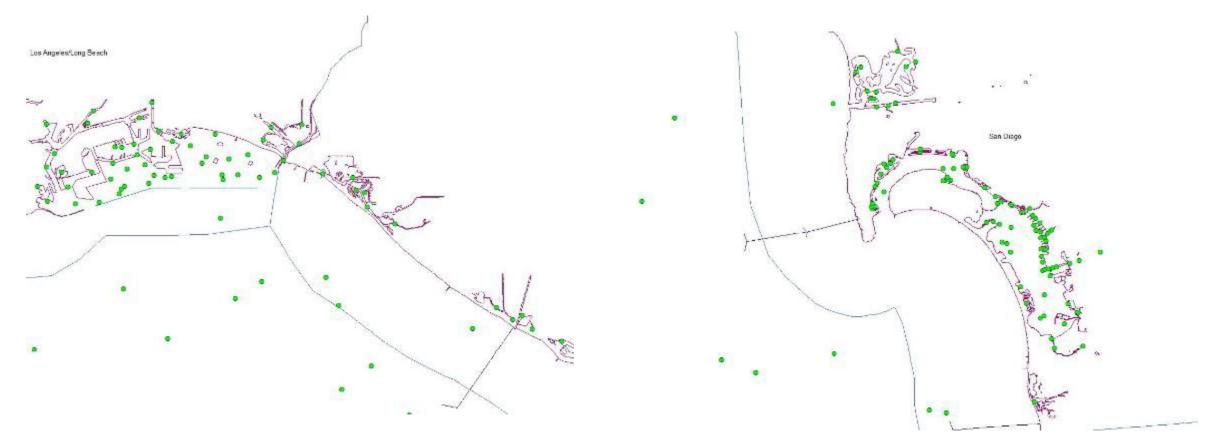


Yellowfin Croaker

California halibut



#### **Bight '23 Sediment Sampling** Locations






#### **Bight '23 Sediment Sampling Locations**

LA and Long Beach Region

San Diego Region



#### **A Few Good Resources**

- ITRC Website: <u>https://pfas-1.itrcweb.org/</u>
- US EPA Guidance Docs: <u>https://www.epa.gov/wqc/aquatic-life-</u> <u>criteria-perfluorooctanoic-acid-pfoa</u>
- SERDP/ESTCP: <u>https://serdp-</u> <u>estcp.mil/focusareas/9db2c9ed-2086-490a-</u> <u>8bc0-f51da299c737</u>
- USEPA Ecotox Database: <u>https://cfpub.epa.gov/ecotox/</u>



# Discussion/Questions

#### **Chris Stransky**

Environmental Scientist, Aquatic Sciences & Toxicology Group WSP USA, San Diego, CA <u>chris.stransky@wsp.com</u> 858-775-5547



wsp.com