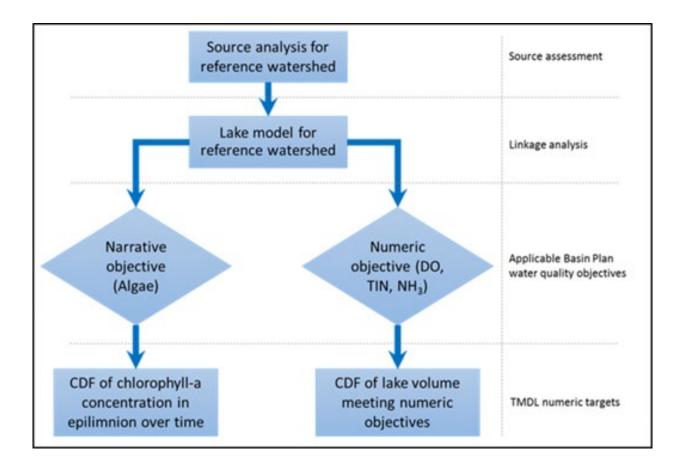


LECL TMDL Task Force Update to TMDL Revision

Presentation by Steve Wolosoff October 26, 2023


Agenda

- Section 1: Introduction
- Section 2: Problem Statement
- Section 3: Numeric Targets
- Section 4: Source Assessment
- Section 5: Linkage Analysis
- Section 6: Allocations
- Section 7: Implementation
- Section 8: Monitoring
- Section 9: CEQA
- Section 10: Economic Considerations

Section 1 Introduction

- Regulatory background
- Reasons to revise TMDL
- Reference watershed approach

- More regulatory background
- Historical data characterization
- Natural history
- 2020 compliance assessment
- Unique factors

- Subwatershed map update
- New table of land use change

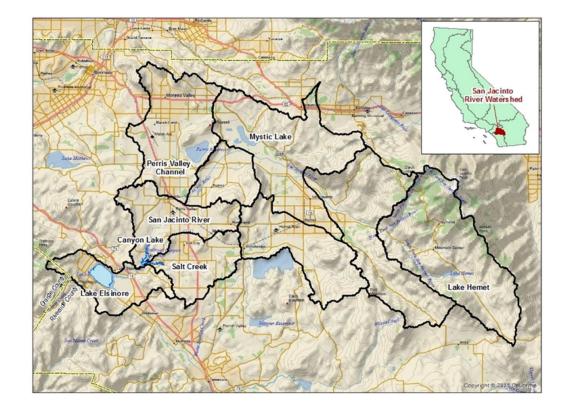
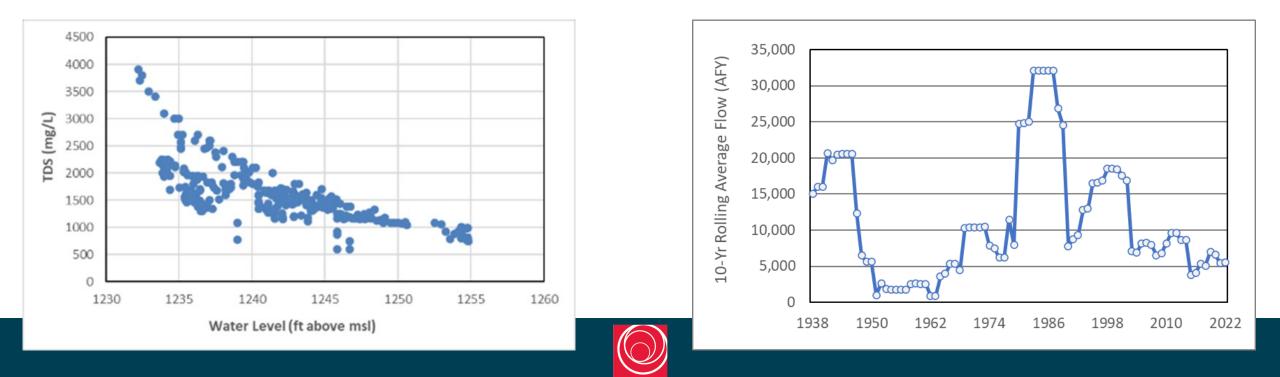


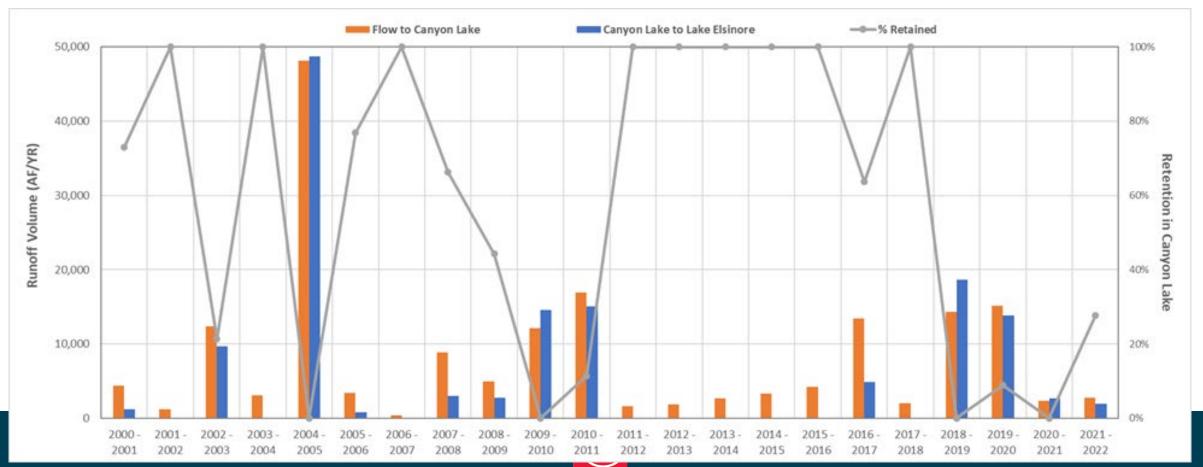
Table 2-5. Comparison of Agricultural, Urban, and Open Space Landuse Acreage Supporting this Proposed TMDL Revision with the Basis for the 2004 TMDL Source Assessment

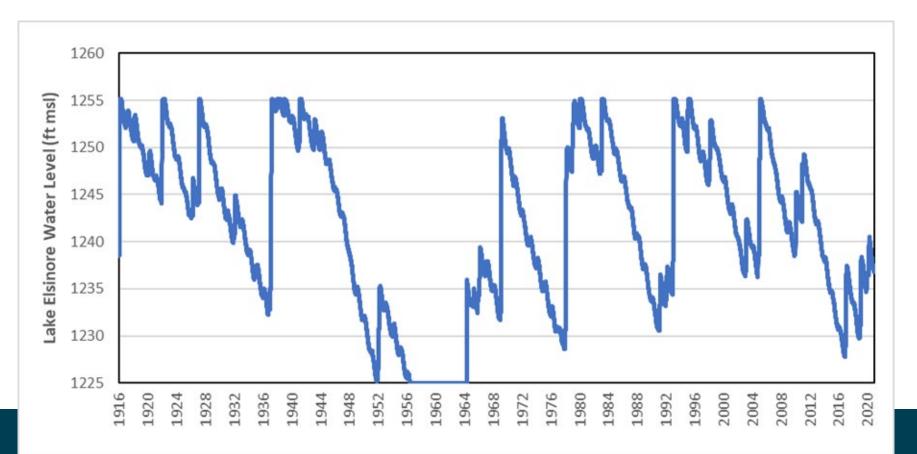
TMDL	Agricultural (acres) ³	icultural (acres) ³ Urban (acres)	
2004 ¹	93,691	71,164	312,455
Proposed Revision ²	53,090	106,186	318,033
Change	-40,601	+35,022	+5,578

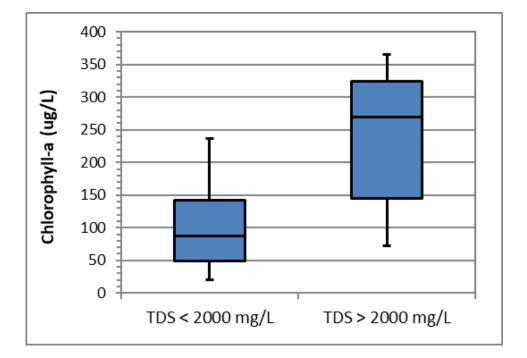
¹ Mapping used to support source assessment based on SCAG 1993.

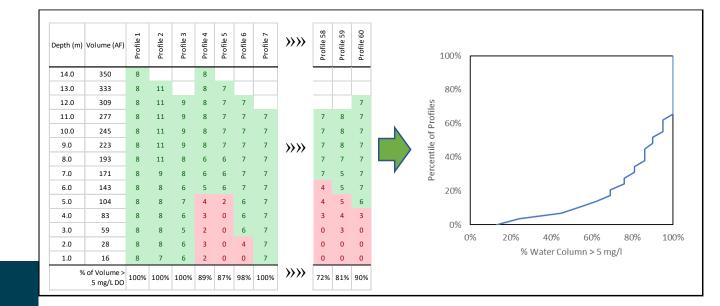

² Mapping used to support source assessment based on SCAG 2019 with refinements for agricultural areas based on AIS 2022.

³ Includes irrigated cropland, non-irrigated cropland, orchard/vineyard, pasture/hay, other livestock, and dairy operations.

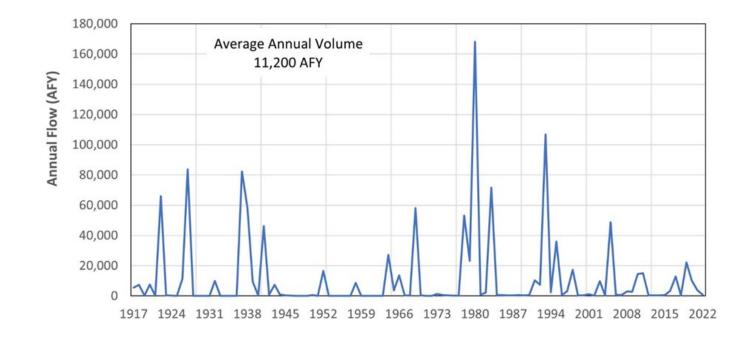

⁴ Estimate for open space from 2004 TMDL was modified by less than 0.5% to account for smaller open water areas treated as open space in 2023 update to source assessment.

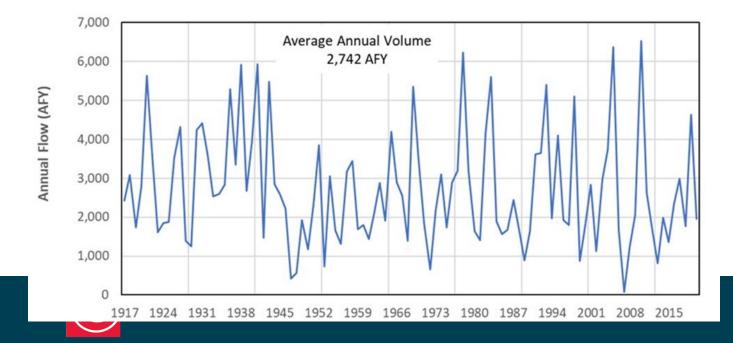

- Update (2000-2022 data) to Figure 2-14 showing relationship between water level and TDS
- Flow data charts updated through 2022


• Flow data charts updated through 2022



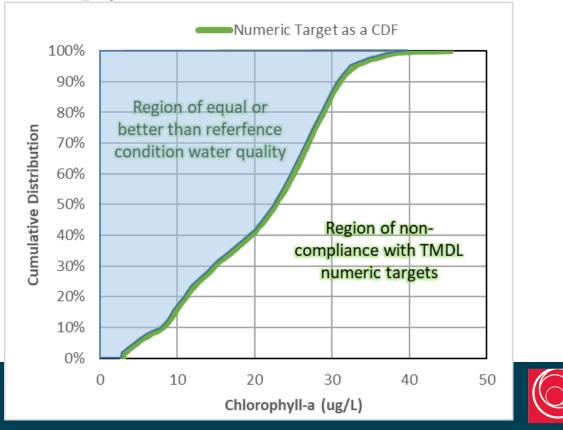
• GLM model results for water level without supplemental water addition



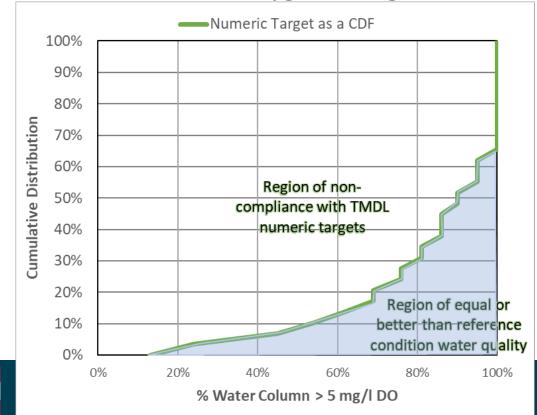

- Update (2002-2022 data) to Figure 3-1 showing measured Lake Elsinore chlorophyll-a in samples collected with > or < 2,000 mg/LTDS
- Update to Figure 3-5 showing how DO profiles are converted into a CDF

- Flow data charts for CL to LE overflow updated through 2022
- Local Lake Elsinore watershed runoff volume inflow estimated by water balance

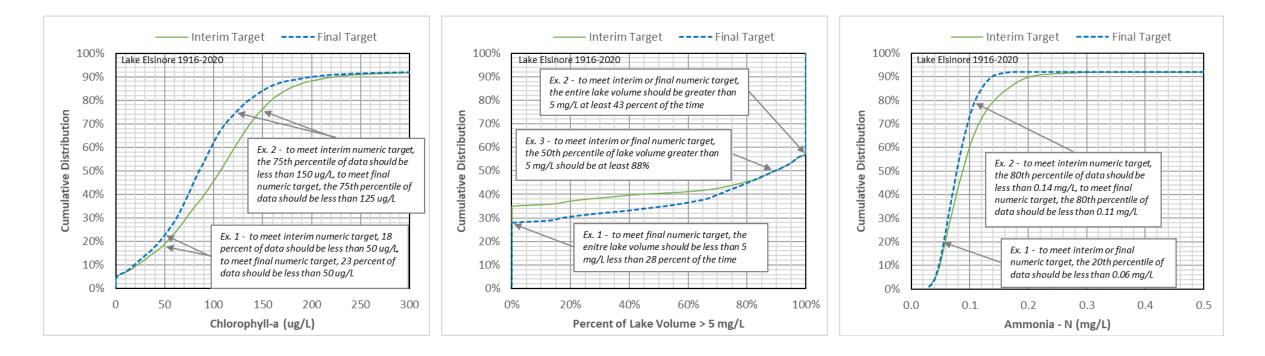
• New table with multiple summary states on the Cranston Guard Station dataset Table 3-2. Summary Statistics from Reference Watershed Site, San Jacinto River at Cranston Guard Station


Metric	TP (mg/L)	TN (mg/L)
Range of Samples	0.05 - 48.00	0.51 – 27.78
Range of Event Means ¹	0.11 – 10.13	0.58 – 7.09
25 th Percentile of Samples	0.16	0.68
25 th Percentile of Event Means ¹	0.22	1.00
Median of Samples	0.32	0.92
Median of Event Means ¹	0.39	1.15
75 th Percentile of Samples	0.73	1.50
75 th Percentile of Event Means ¹	1.07	2.62

¹ Number of samples per event varies

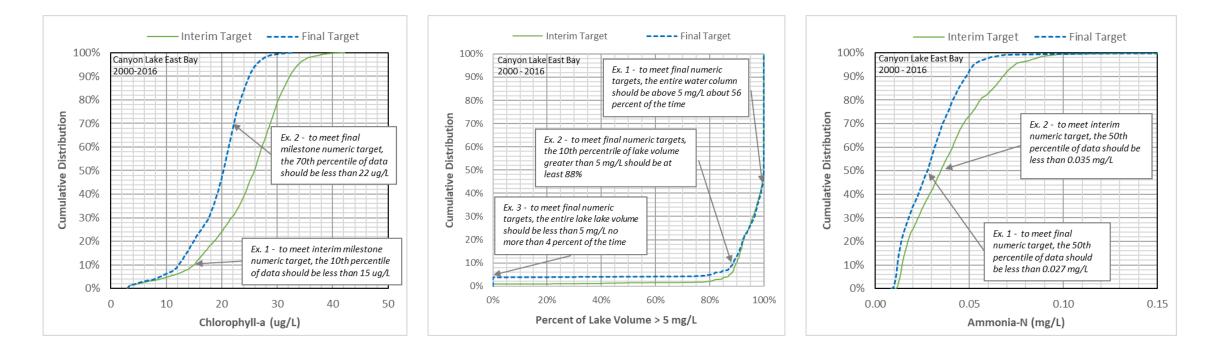


• What is better water quality when comparing two CDFs?

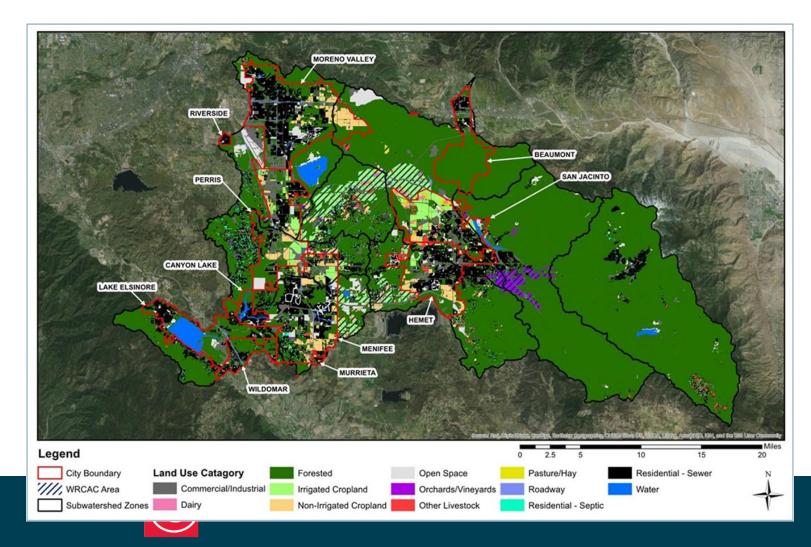

Chlorophyll-a, Ammonia-N

Volume of Dissolved Oxygen > 5 mg/L

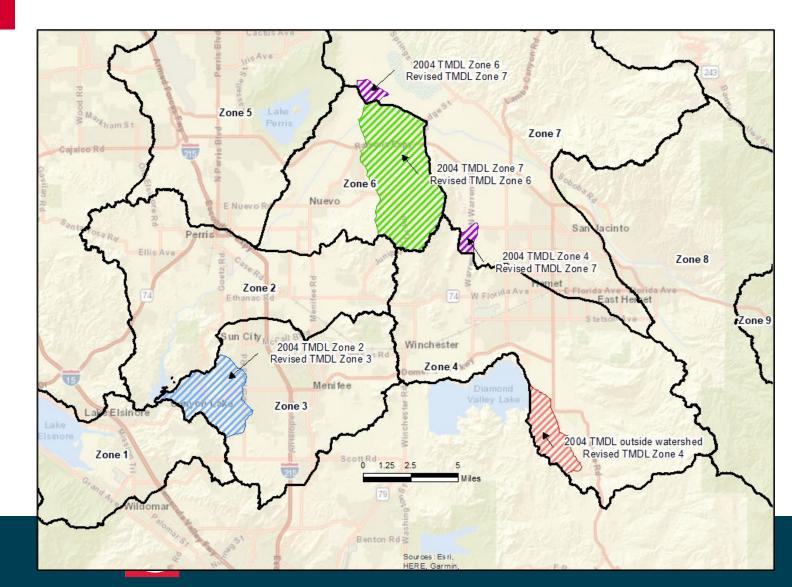
• CDF Targets Updated – Lake Elsinore

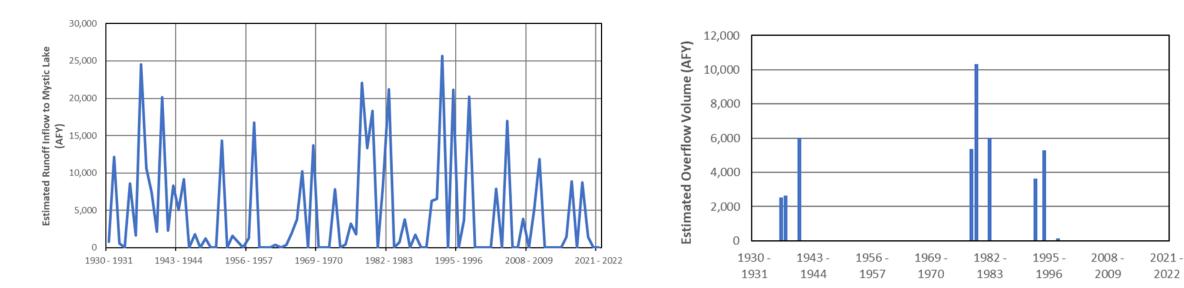


• CDF Targets Updated – Canyon Lake Main Lake



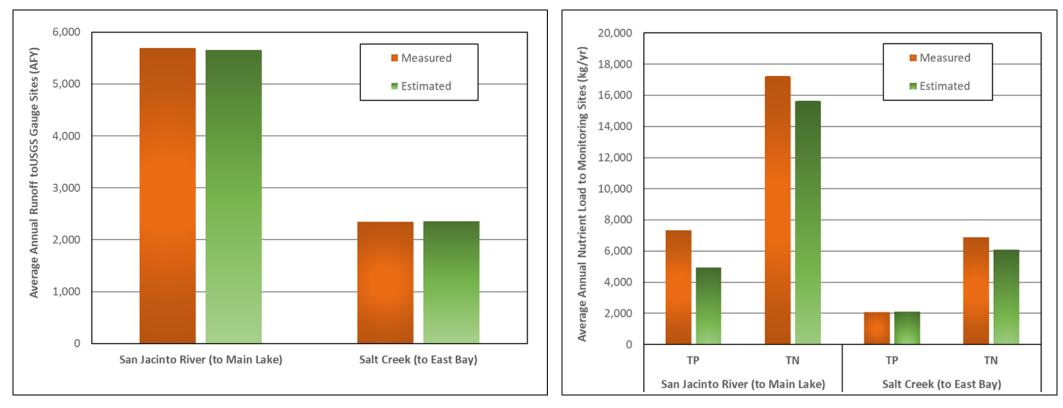
• CDF Targets Updated – Canyon Lake East Bay




• Update to model segments of common jurisdictional boundaries, land use, subwatershed zone

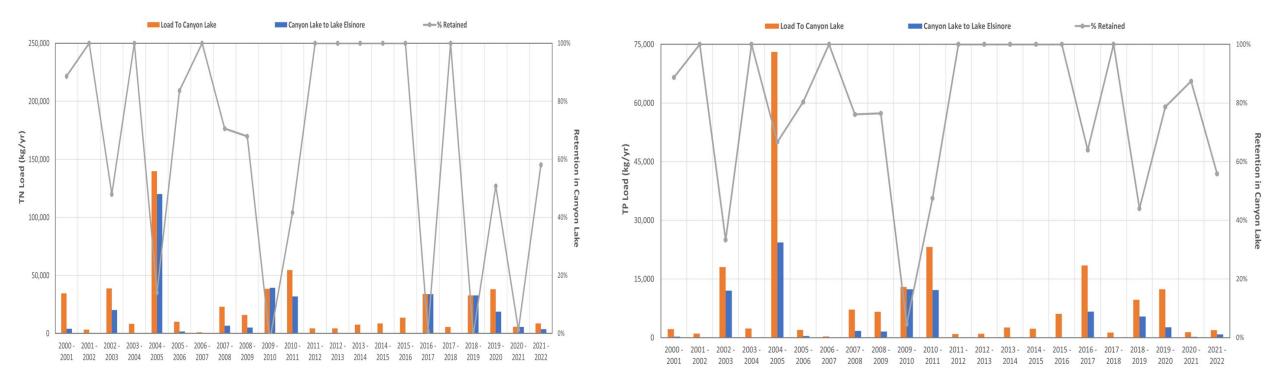
• New watershed boundary revision in zone 4

• Mystic Lake water balance update



• Nutrient washoff concentration assumption for 'other livestock' land use (future non-dairy CAFO)

Table 4-7. Urban and Dairy Land Use-specific Nutrient Washoff Concentrations Used for Source Assessment


Land Use	TP (mg/L)	TN (mg/L)	Site Name	Source (No. of Samples; Period of Record)
Commercial / Industrial	0.56	2.76	Corona Storm Drain (Station 40)	RCFC&WCD (n=49; 2004–2022)
Residential – Sewer	0.48	2.43	Sunnymead Channel (Station 316)	RCFC&WCD (n=49; 2004–2022)
Residential – Septic	0.59	5.30	Canyon Lake at Sierra Park (Station 834)	RCFC&WCD (n=21; 2000-2004)
Roadway	0.38	3.41	Freeway (FW) CACTA006, 011, 012, 013	NSQD (n=14; 1997-1999)
Open Space / Forested	0.32	0.92	Cranston Guard Station	USFS (n=54; 2001–2010)
Other Livestock (e.g., chicken farm, horse ranch)	1.97	7.94	Median of nationwide studies included in the MANAGE model database (after Harmel et al, 2006)	
Dairy	9.10	14.90	SJBRCD1	San Jacinto Resource Conservation District 2009 (n=1; May 2008)

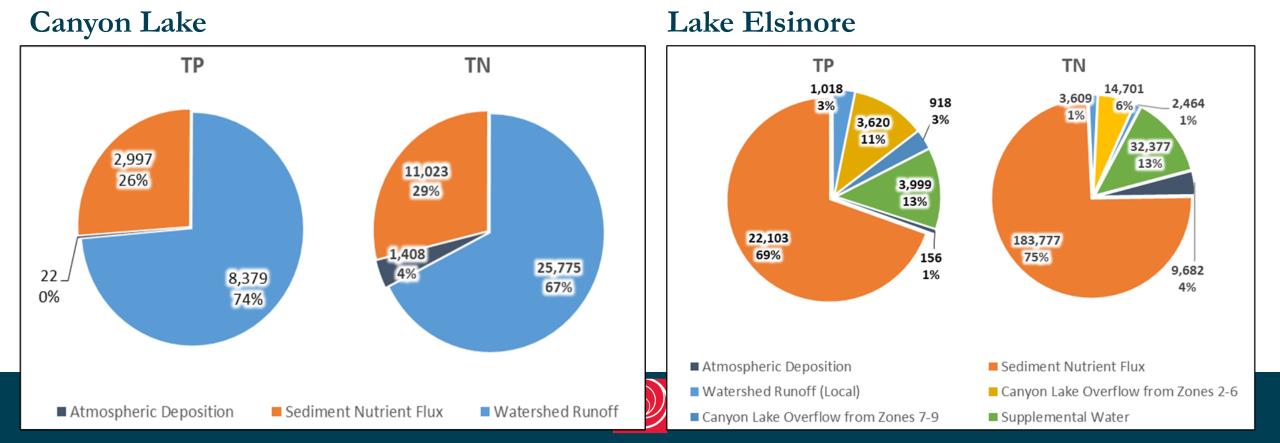
• Updated model fit charts

• Updated nutrient mass inflow and outflow from Canyon Lake

• New table of baseline watershed loads by jurisdiction

Table 4-9. Baseline Nutrient Washoff at Jurisdictional Boundaries and at Downstream Lake Inflows

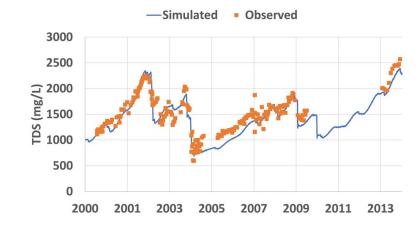
Table 4-9. Daseline Nutriel	Washoff at Jurisdictional		Boundaries and at Downstream Lake Inflow			innows
Responsible Agency or	Jurisdiction \	Washoff ¹	To Canyon Lake (Zones 2-6) ²		To Lake Elsinore (Zones 1 and 7-9) ³	
Jurisdiction	TP (kg/yr)	TN (kg/yr)	TP (kg/yr)	TN (kg/yr)	TP (kg/yr)	TN (kg/yr)
Banning	25	107	0	0	2	11
Beaumont	229	865	0	0	23	87
CAFO	43	63	9	14	4	5
Caltrans	170	1,036	73	543	24	160
City of Canyon Lake	145	655	127	574	18	81
Federal – DOD	96	636	88	582	0	0
Hemet	1,297	4,454	187	620	38	142
City of Lake Elsinore	645	2,273	96	338	549	1,935
March Joint Powers Authority	93	408	86	373	0	0
Menifee	1,513	5,210	1,505	5,184	8	26
Moreno Valley	1,688	6,801	1,521	6,166	3	6
Murrieta	30	112	30	112	0	0
Perris	1,276	3,605	1,202	3,394	0	0
City of Riverside	48	161	44	148	0	0
Riverside County	7,031	17,833	2,312	6,239	483	1,392
San Jacinto	692	2,394	1	5	70	240
Wildomar	168	599	0	0	167	598
Agriculture: Irrigated	986	897	402	376	49	44
Agriculture: Non-irrigated	1,067	1,359	545	694	42	53
California DFW	295	835	52	151	24	68
Federal – BLM	285	801	33	90	23	67
Federal – National Forest	2,481	7,110	1	3	319	915
Federal – Native American Land	170	406	0	0	17	41
Federal – Wilderness	466	1,340	0	0	47	136
State Land	251	695	53	137	20	55
WRCRCA	79	171	11	32	6	11
Total Baseline Watershed Load	21,268	60,827	8,379	25,775	1,937	6,073



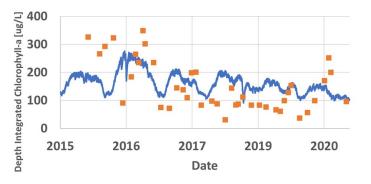
¹ Washoff load for open space and forest lands estimated using 50th percentile of Cranston Guard Station shown in Table 4-7 above. For estimation of load reduction to meet final allocations at the 25th percentile of Cranston Guard Station, these baseline loads were necessarily adjusted for open space and forest to coincide with the 25th percentile washoff concentrations of 0.16 mg/L TP and 0.68 mg/L TN.

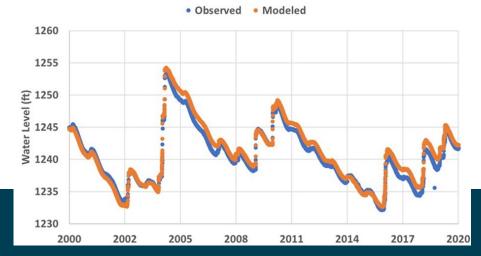
² Loads are total delivered to Canyon Lake inflow accounting for losses by channel bottom recharge in subwatershed zones 4,5, and 6. Overflows to Lake Elsinore are not subtracted from inflow load.

• Summary of nutrient sources for existing conditions



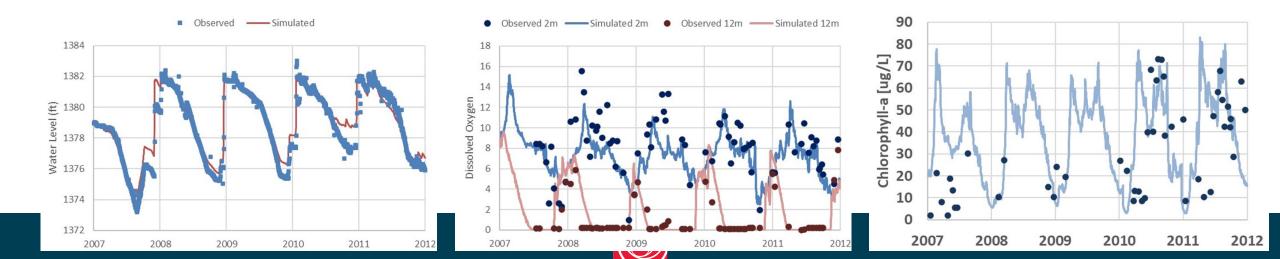
Section 5 Linkage Analysis


• Calibration with migrated models; GLM for Lake Elsinore

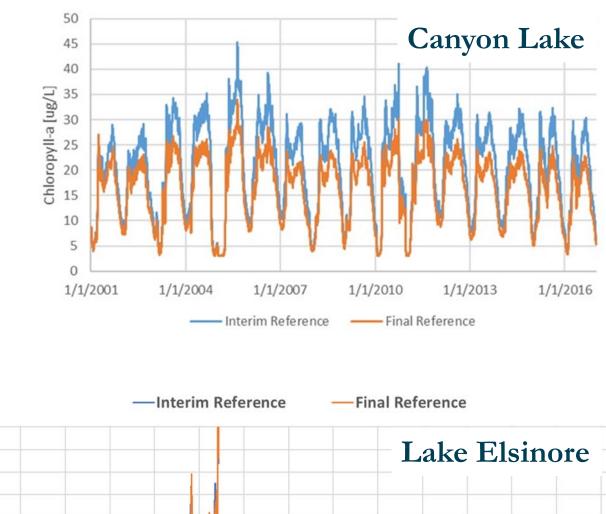

Table 5-2. Mean Observed and Predicted Values and Model Percent Relative Error of KeyWater Quality Parameters for Calibration Period (2000-2014) for Lake Elsinore

Variable	Observed	Predicted	% Relative Error	RMSE	Observed Standard Deviation
Lake Elevation (ft)	1241.5	1241.3	2.6%	0.86	4.43
Temperature (°C)	24.4	25.6	6.6%	2.17	2.42
TDS (mg/L)	1509	1499	12.2%	200	401
DO (mg/L)	8.1	7.9	19.2%	2.02	1.16
Seasonal Average TN (mg/L)	4.2	5.1	36.1%	1.35	1.75
Seasonal Average TP (mg/L)	0.30	0.28	35.1%	0.12	0.16
Seasonal Average Chlorophyll-a (μg/L)	155	158	57.7%	90	98

-Simulated Observed



Section 5 Linkage Analysis


 Calibration with migrated models; AEMBD for Canyon Lake Table 5-4. Mean Values for Observed and Predicted Water Quality Parameters in Canyon Lake (Observed/Predicted)


Site	Depth (m)	Temperature (ºC)	DO (mg/L)	Chlorophyll-a (µg/L)	Total N (mg/L)	Total P (mg/L)
Main	Epilimnion (2-m)	21.5 / 21.3	8.1 / 7.3	31.2 / 38.8	1.57 / 1.24	0.59 / 0.66
Lake (M1)	Hypolimnion (12-m)	13.3 / 12.9	1.0 / 1.3	-	-	-
East Bay (E2)	Epilimnion (1-m)	-	-	50.8 / 53.7	1.80 / 1.36	0.48 / 0.64

Section 5 Linkage Analysis

 Model scenario for a reference watershed nutrient inflow to create numeric in-lake water quality targets (presented as CDFs in Section 3)

• Wasteload and Load Allocations based on nutrient washoff from a condition where each jurisdictional area is returned to reference watershed

\mathcal{Y}

Table 6-1. Allocations for Watershed Runoff in Lake Elsinore and Canyon Lake Nutrient TMDLs

Responsible Agency or	Interim Milesto	one	Final Milestone	Final Milestone		
Jurisdiction	TP (kg/yr)	TN (kg/yr)	TP (kg/yr)	TN (kg/yr)		
Wasteload Allocations						
Banning	17	49	8	36		
Beaumont	166	477	83	352		
CAFO	3	10	2	7		
Caltrans	131	377	66	279		
City of Canyon Lake	102	294	51	217		
Federal - DOD	68	195	34	144		
Hemet	796	2,289	398	1,692		
City of Lake Elsinore	470	1,352	235	999		
March Joint Powers Authority	65	188	33	139		
Menifee	942	2,708	471	2,002		
Moreno Valley	1,089	3,132	545	2,315		
Murrieta	20	56	10	42		
Perris	620	1,783	310	1,318		
City of Riverside	32	91	16	67		
Riverside County	3,010	8,654	1,505	6,396		
San Jacinto	440	1,266	220	936		
Wildomar	121	347	60	256		
Load Allocations		L		L		
Agriculture: Irrigated	268	772	134	571		
Agriculture: Non-irrigated	81	232	40	171		
California DFW	288	827	144	612		
Federal - BLM	274	788	137	583		
Federal - National Forest	2,460	7,074	1,230	5,228		
Federal - Native American Land	135	389	68	288		
Federal - Wilderness	466	1,340	233	991		
State Land	234	674	117	498		
WRCRCA	45	129	23	96		
Total Allowable Watershed Load (WLAs and LAs)	12,346	35,495	6,173	26,235		

¹ Allocations are for watershed runoff at the jurisdictional boundary. Losses not accounted for are associated with reductions occurring downstream of subwatersheds 7-9 at Mystic Lake and downstream of subwatershed 4,5,6 in

• Current load minus allocation equals the load reduction to be achieved by each jurisdiction in watershed

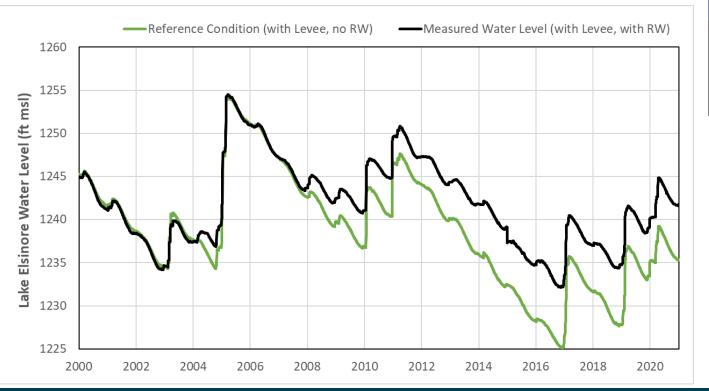

	C			
K		لا	J	
		-		

Table 6-2. Nutrient Load Reduction Required for Watershed Jurisdictions to Comply with Lake Elsinore and Canyon Lake Nutrient TMDLs

Responsible Agency or	Interim Milest	one ¹	Final Milestone	Final Milestone ²		
Jurisdiction	TP (kg/yr)	TN (kg/yr)	TP (kg/yr)	TN (kg/yr)		
Wasteload Allocations						
Banning	8	58	15	69		
Beaumont	63	389	124	479		
CAFO	39	54	41	56		
Caltrans	39	659	87	731		
City of Canyon Lake	43	361	90	433		
Federal - DOD	28	441	60	489		
Hemet	501	2,165	846	2,682		
City of Lake Elsinore	175	921	331	1,155		
March Joint Powers Authority	28	220	47	248		
Menifee	571	2,502	926	3,035		
Moreno Valley	598	3,669	1,079	4,390		
Murrieta	11	56	20	69		
Perris	656	1,823	897	2,185		
City of Riverside	16	70	32	94		
Riverside County	4,020	9,179	4,677	10,164		
San Jacinto	252	1,128	416	1,374		
Wildomar	47	252	89	315		
Load Allocations						
Agriculture: Irrigated	717	125	850	324		
Agriculture: Non-irrigated	987	1,127	1,027	1,187		
California DFW	7	8	7	8		
Federal - BLM	11	13	11	14		
Federal - National Forest	21	36	24	41		
Federal - Native American Land	35	17	42	27		
Federal - Wilderness	-	-	-	-		
16 21 18 24 State Land	16	21	18	24		
WRCRCA	34	42	36	44		
Total Watershed Load Reduction	8,922	25,333	14,664	43,514		

¹ Baseline load (Table 4-1) – Allocation (Table 6-1) = Watershed Load Reduction (Table 6-2)
 ² Baseline load with open space and forest at 25th percentile – Allocation (Table 6-1) = Watershed Load Reduction (Table 6-2)

• EVMWDreclaimed water

Table 6-3. WLAs for EVMWD Reclaimed Water Additions to Lake Elsinore

EVMWD Reclaimed	Flow		Concer	ntration	Nutrient Load		
Water Additions	mgd	AFY	TP (mg/L)	TN (mg/L)	TP (kg/yr)	TN (kg/yr)	
Current Permit	7.5	6,037	0.50	1.00	3,721	7,442	
Interim WLA	7.5	8,402	0.32	0.92	3,317	9,535	
Final WLA	7.5	8,402	0.16	0.68	1,658	7,048	

• TMDL revision reduces allowable external nutrient loads to lakes relative to 2004 TMDL

Total Allowable External Loads ¹	Total Phosphc	orus (kg/yr)		Total Nitrogen (kg/yr)			
	2004 TMDL	TMDL Revision - Interim	TMDL Revision - Final	2004 TMDL	TMDL Revision – Interim	TMDL Revision - Final	
Total Canyon Lake	3,845	4,286	2,143	22,268	12,321	9,107	
Canyon Lake to Lake Elsinore (LA)	2,770	2,471	1235	20,774	7,104	5,251	
Lake Elsinore ²	6,922	4,717	2,359	29,953	13,562	10,024	

Table 6-7. Comparison of Total WLAs and LAs for External Nutrient Sources Between the Proposed Revised TMDLs and Existing 2004 TMDLs

¹ Total allowable external load is the TMDL minus allocations for internal sources, e.g. sediment nutrient flux and atmospheric deposition

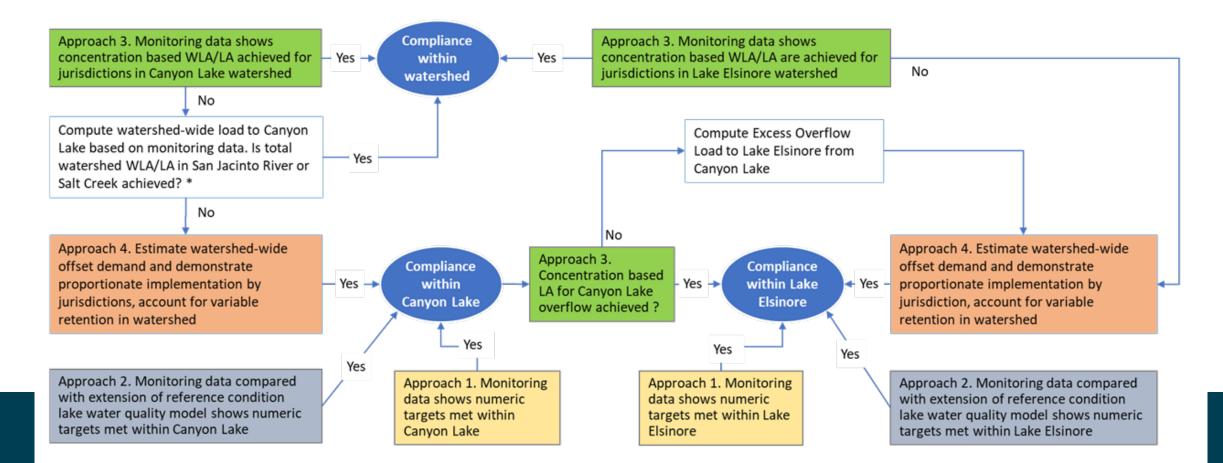
² TMDL includes the LA for Canyon Lake overflows

Section 7 Implementation – Phase 1

- 2004 Present
- Review of existing controls in watershed and within the lakes

Table 7-4. Change in Median Total Phosphorus and Total Nitrogen Concentrations in Monitored Events from Before and After 2010-2011 Wet Season

Period	San Jacinto F Road	River at Goetz	Salt Creek at	Murrieta	San Jacinto River near Elsinore (Canyon Lake Overflow)				
	TP (mg/L)	TN (mg/L)	TP (mg/L)	TN (mg/L)	TP (mg/L)	TN (mg/L)			
Median (Pre-2011)	0.68	2.87	0.62	2.68	0.46	1.89			
Median (Post-2011)	0.58	2.10	0.43	2.29	0.15	1.50			
Difference	-0.10	-0.77	-0.19	-0.39	-0.31	-0.39			
Percent Change	-15%	-27%	-31%	-15%	-68%	-20%			


Section 7 Implementation – Phase 2 (Years 1-20)

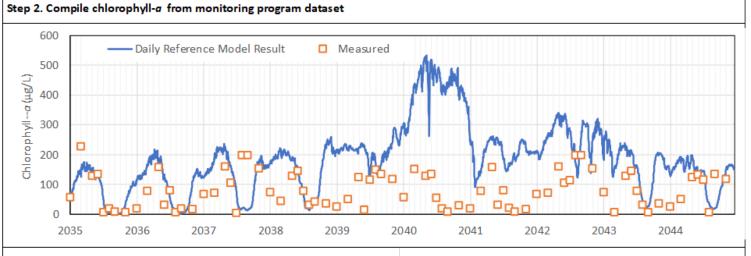
		Phase 2 Implementation - Year After Effective Date															
Task	Brief Description					6	7	8 9	10	11	12	13 14	15	16	17 18	3 19	20
Task 1 – Stakeholder Coordination	LECL Task Force collaboration at least quarterly																
Task 2 – Revision to Existing Permits and Other Regulatory Actions	Update permits or other regulatory actions to support TMDL implementation																
Task 3 – Revise Existing Watershed Implementation Plans	Revise existing Riverside County MS4 Program CNRP	Wat	tersh	ed Plan:	;												
Task 4 – Implementation and/or Revision of Existing In-lake Water Quality Controls for Canyon Lake	Evaluate effectiveness of the Canyon Lake Alum Project and potential feasibility of implementation of other water quality control options			Stu	dy Im	pleme	nt Pre	ferred C)p tior	n(s)							
Task 5 – Evaluate In-Lake Control Options to Main Intended Uses in Lake Elsinore	Identify and evaluate feasible water quality control options that may be implemented to improve and maintain water quality in Lake Elsinore for its intended uses; identify preferred option(s)	Rep	ort														
Task 6 — Implementation of Preferred Option or Options for Water Quality Controls in Lake Elsinore	Prepare schedule to implement findings from Task 5 based on available funding and schedule	Wor	kp lar		nplem	ent Pre	ferre	dOption	ı(5)								
Task 7 – Revise Lake Elsinore Water Quality Criteria Based on In-Lake Treatment Controls, if applicable	Develop Work Plan to revise water quality criteria applicable to Lake Elsinore							Wo	orkpla	an							
Task 8 — Special Study: Evaluate Cyanobacteria in Lake Elsinore	Evaluate HAB conditions in Lake Elsinore and options to manage cyanobacteria and toxicity		Stud	y O							Study	0					
Task 9 – Special Study: Performance of Watershed Controls	Evaluate performance of updated watershed controls included in the revised and approved watershed implementation plans			w	orkpla	n Im į	leme	nt Study	,								
Task 10 – Special Study: Reference Watershed Conditions	Conduct Special Study to validate basis for Phase 2 interim targets and allocations being representative of reference watershed conditions			w	orkpla	n Imp	lemer	nt Study		(
Task 11 - Special Study: Lake-bottom Sediment Sampling and Core Flux Experiments	Evaluate status of nutrient enrichment in lake sediments		C	Study							Study	0					
Task 12 – Special Studies: Fishery Management	Evaluate status of Common Carp population in Lake Elsinore							Stu	dy	4						Stur	v
Task 13 – Evaluate Status of TMDL Compliance with Interim Targets, Wasteload and Load Allocations	Evaluate status of compliance with TMDLs			•		(0		0			•		0	
Task 14 – Evaluate Final TMDL Targets, Wasteload Allo <i>c</i> ations and Load Allocations	Re-evaluate final TMDL targets, wasteload, load allocations, and approaches to demonstrate compliance											Rep	port (ł			
Task 15 – Identify Possible Revisions to the TMDLs	As appropriate, prepare necessary documentation to support revisions to the TMDLs													Rep	ort		
Task 16 – Surveillance & Monitoring Program (SAP)	Update existing SAP for the LECL TMDLs	Sam	pling	and An	alysis F	lan				Sam) pling a	nd Ana	lysis P	lan			
Task 17 – Annual Water Quality Reports	Prepare annual water quality reports	0	0	0		0	0	0 0	0			0 0		0	0 0	0	0

Section 7 Implementation – Phase 3 (Years 21-30)

T 1-	Brief Description			gram	ram of Implementation Activitie					
Task	Brief Description	21 22	23	24	25	26	27	28	29	30
Task 1 – Stakeholder Coordination	LECL Task Force collaboration at least quarterly									
Task 2 - Davies Fridding Weddard Incolour antadian Diana	Revise existing Riverside County MS4 Program CNRP	O CNRP for I	viS4s							
Task 2 – Revise Existing Watershed Implementation Plans	Revise other existing Watershed Implementation Plans, revise existing Irrigated Lands General Order, as needed	Otherwa	o tershe	plans	5					
Task 3 – Evaluation of In Lake Water Quality Controls for Canyon Lake	Evaluation and implementation of existing in-lake water quality controls			Wor	kplan	2				
Task 4 — Implementation of New or Revised Water Quality Controls for Lake Elsinore	Implement new or revised water quality controls for Lake Elsinore as determined appropriate			Woi	kplan	2				
Task 5 – Special Studies – Fishery Management	Evaluate status of fishery populations in Lake Elsinore using consistent sampling and data analysis methods used in previous studies				C Study	2				
Task 6 – Evaluate Status of TMDL Compliance with Final Targets, Wasteload and Load Allocations	Evaluate status of compliance with the final TMDL targets and allocations	0		(>		0			<
Task 7 — Implementation of Gap Analysis	Based on results of Task 6, determine the load reductions remaining to be achieved to meet the final allocations and targets		Repor	5						
Task 8 - Special Study: Lake-bottom Sediment Sampling and Core Flux Experiments	Two rounds of collection and analysis of lake bottom sediment cores will be collected from historically sampled locations in both Canyon Lake and Lake Elsinore to assess changes to nutrient enrichment after project	Stud) Study			
Task 9 - Evaluate Water Quality Control Options for Canyon Lake to Maintain Intended Aquatic Life, Recreational and Municipal Uses, if necessary	Evaluation of reasonably feasible lake management activities in Canyon Lake that may be implemented to improve and maintain water quality for intended uses.		Rei	oort	2					
Task 10 - Evaluate Supplemental Water Quality Control Options for Lake Elsinore to Maintain Intended Aquatic Life and Recreational Uses, if necessary	Evaluate supplemental water quality control options for Lake Elsinore to maintain intended aquatic life and recreational uses, including reduction of harmful algae blooms in frequently used swimming beaches.		Rei	ort	2					
Task 11 - Implementation of New/Refined Water Quality Controls	Implement new/refined projects included in Phase 3 updates to the CNRP and other related watershed management activities (see Task 2); as necessary and applicable									
Task 12 – Surveillance & Monitoring Program	Update TMDL SMP (and QAPP) as needed; updates should include a program to conduct watershed aerial surveys of land use every 5 years, and HAB and cyanotoxin monitoring or both lakes	Sampling	and Ar	nalysis	Plan					
Task 13 – Annual Reporting Program	Annual Water Quality Reports	0 0	0	0	0	0	0	0	0	0
Task 14 – Adaptive Management	Meet any of the remaining implementation gap (see Task 7) through adaptive management; coordinate project refinements or enhancements with operators and other stakeholders through the TMDL Task Force									

• Guidance for multiple pathways for future compliance demonstrations

• Approach 1: Monitoring Data Compared to Numeric Targets


example for T1	ofile 1 of 60				
Water Surface Elevation (ft msl)	Depth of Water (m)	Profile 1 DO Readings (mg/L)	Cumulative Volume (AF)	Incremental Volume (AF)	Volume with D > 5 mg/L
1382	14.0	9.0	6,537	829	829
1379	13.0	8.5	5,709	766	766
1376	12.0	8.0	4,943	705	705
1373	11.0	8.0	4,238	645	645
1370	10.0	7.0	3,593	587	587
1367	9.0	7.0	3,007	530	530
1364	8.0	6.5	2,477	475	475
1361	7.0	6.0	2,002	421	421
1358	6.0	6.0	1,581	369	369
1355	5.0	5.5	1,212	318	318
1352	4.0	4.5	893	269	0
1349	3.0	4.0	624	221	0
1346	2.0	3.0	403	175	0
1343	1.0	2.5	227	227	0
			Volume (AF)	6,537	5,644
		Fra	ction above 5 mg/L DC	8	6%
Exceedence	Fraction of Lake	Reference CDF			•
Frequency	Volume with DO >	(Numeric Target)	8.0%		
Frequency	5 mg/L	(Numeric Target)	80%		
Frequency 0%	5 mg/L 24%	(Numeric Target) 13%	·		
Frequency 0% 3%	5 mg/L 24% 45%	(Numeric Target) 13% 24%	·		
Frequency 0% 3% 7%	5 mg/L 24% 45% 62%	(Numeric Target) 13% 24% 45%	·		
Frequency 0% 3% 7% 10%	5 mg/L 24% 45% 62% 62%	(Numeric Target) 13% 24% 45% 54%	Fredue.		
Frequency 0% 3% 7% 10% 14%	5 mg/L 24% 45% 62% 62% 69%	(Numeric Target) 13% 24% 45% 54% 62%	Fredue.		: //
Frequency 0% 3% 7% 10% 14% 17%	5 mg/L 24% 45% 62% 62% 69% 76%	(Numeric Target) 13% 24% 45% 54% 62%	Fredue.	- Numeric Target Measured (10-1	: //
Frequency 0% 3% 7% 10% 14% 17% 21%	5 mg/L 24% 45% 62% 62% 69% 76% 81%	(Numeric Target) 13% 24% 45% 54% 62% 69% 69%	Fredue.		: //
Frequency 0% 3% 7% 10% 14% 17% 21% 24%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81%	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 76%	Fredue.		: //
Frequency 0% 3% 7% 10% 14% 17% 21% 21% 24% 28%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 81% 86%	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 69% 76% 76%	Exceedance Frequency		: //
Frequency 0% 3% 7% 10% 14% 17% 21% 24% 28% 31%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 81% 86% 90%	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 76% 76% 81%	Fredue.		: //
Frequency 0% 3% 7% 10% 14% 17% 21% 24% 28% 31% 34%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 86% 90% 90%	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 69% 76% 76% 81% 81%	Exceedance Frequency		: //
Frequency 0% 3% 7% 10% 14% 17% 21% 24% 28% 31% 34% 38%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 81% 90% 90% 90%	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 69% 76% 76% 81% 81% 86%	A		: //
Frequency 0% 3% 7% 10% 14% 17% 21% 24% 28% 31% 34% 38% 41%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 81% 90% 90% 90% 90% 92%	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 69% 76% 76% 81% 81% 81% 86% 86%	Exceedance Frequency		: //
Frequency 0% 3% 7% 10% 14% 21% 24% 24% 28% 31% 34% 34% 38% 41% 45%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 81% 90% 90% 90% 90% 90% 90% 92% 94%	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 76% 76% 81% 81% 81% 86% 86% 86%	20% 0%		Yrs)
Frequency 0% 3% 7% 10% 14% 17% 21% 24% 28% 31% 34% 34% 38% 41% 45% 48%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 81% 90% 90% 90% 90% 90% 90% 90% 90	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 69% 76% 76% 81% 81% 81% 86% 86% 86% 86% 90%	20% 0%	Measured (10-)	Yrs) % 80% 1009
Frequency 0% 3% 7% 10% 14% 21% 24% 28% 31% 34% 34% 38% 41% 45% 48% 52%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 81% 90% 90% 90% 90% 90% 90% 90% 90	(Numeric Target) 13% 24% 45% 54% 69% 69% 69% 76% 76% 81% 81% 81% 86% 86% 86% 86% 90% 90%	20% 0%	Measured (10-)	Yrs) % 80% 1009
Frequency 0% 3% 7% 10% 14% 21% 24% 28% 31% 34% 34% 38% 41% 45% 48% 52% 55%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 86% 90% 90% 90% 90% 90% 90% 90% 90	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 76% 76% 81% 81% 81% 86% 86% 86% 86% 90% 90% 95%	20% 0%	Measured (10-)	Yrs) % 80% 1009
Frequency 0% 3% 7% 10% 14% 21% 24% 28% 31% 34% 38% 41% 45% 48% 52% 55% 59%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 81% 90% 90% 90% 90% 90% 90% 90% 90	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 76% 69% 76% 81% 81% 81% 86% 86% 86% 86% 90% 90% 95%	20% 0%	Measured (10-)	Yrs) % 80% 100
Frequency 0% 3% 7% 10% 14% 21% 24% 28% 31% 34% 34% 34% 38% 41% 45% 48% 52% 55% 59% 62%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 81% 90% 90% 90% 90% 90% 90% 90% 90	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 69% 76% 81% 81% 81% 86% 86% 86% 86% 90% 90% 90% 95%	20% 0%	Measured (10-1) 20% 40% 609 % Water Column >	Yrs) % 80% 1009
Frequency 0% 3% 7% 10% 14% 21% 24% 28% 31% 34% 34% 38% 41% 45% 48% 52% 55% 59%	5 mg/L 24% 45% 62% 62% 69% 76% 81% 81% 81% 90% 90% 90% 90% 90% 90% 90% 90	(Numeric Target) 13% 24% 45% 54% 62% 69% 69% 76% 69% 76% 81% 81% 81% 86% 86% 86% 86% 90% 90% 95%	20% 0%	Measured (10-)	Yrs) % 80% 1009

Step 1. Run lake water quality model for preceding five-year period, output daily lakewide average surface chlorophyll-a concentration

Section 7 Implementation

• Approach 2: Reference Condition Model

400

Step 3. Plot measured and modeled chlorophyll-a (µg/L) as CDF

	1				1				
%ile	Observed Data	Reference Model	%ile	Observed Data	Reference Model	100%		nce Model (1 red Data (10	-
3%	4	3	51%	131	146	100%		8	
5%	5	14	54%	134	149			8	
8%	5	21	56%	134	152	> 80%		8	
10%	7	27	59%	144	154	C 00%		3	/
13%	11	40	62%	147	157	ine	8		
15%	16	63	64%	150	159	Frequency 90%	8		
18%	18	86	67%	151	162	е Г	8		
20%	18	103	69%	152	165	Cumulative Cumulative	8		
23%	20	118	72%	155	169	2 40%	80	/	
25%	24	126	74%	157	172	L 40%	õ	/	
28%	28	133	77%	158	175	0	8		
30%	30	140	79%	179	181	20%	8		
33%	33	145	82%	179	188	2070	8		
35%	38	150	85%	186	194	6	3		
38%	46	155	87%	188	200	0%	y		
40%	51	159	90%	196	203	0	100	200	300
43%	55	163	92%	197	206	•	100	200	300
45%	65	168	95%	200	210		Lake-wide	Average Sur	face Chl- <i>α</i> (μg/L)
48%	70	175	97%	204	213]		maliance	
50%	72	182	100%	216	222		u	ompliance v	

• Approach 3: External Load Reduction

Year	Storm 1 TP (mg/L)	Storm 2 TP (mg/L)	Storm 3 TP (mg/L)	Storm 1 TN (mg/L)	Storm 2 TN (mg/L)	Storm 3 TN (mg/L)
Year 1	0.27			2.00		
Year 2	0.20	0.43		2.40	2.30	
Year 3	0.18	0.32		4.20	2.10	
Year 4	0.16			4.30		
Year 5	0.10	0.14	0.14	2.10	3.77	3.28
Year 6	0.11	0.21	0.11	1.40	4.12	2.89
Year 7	0.33	0.24	2.88 *	1.20	2.11	16.02 *
Year 8	0.29	0.37		0.80	2.36	
Year 9	0.42			0.96		
Year 10	0.68	0.32		3.40	0.91	
Step 2. Compute 10-	yr Average	0.	26		2.	45
Sample removed from a	verage calculation	n because of inf	fluence of burne	d hillside erosio	on (TSS = 3163 n	ng/L)

- Approach 4: In-lake Offsets
- Formulas to estimate the excess nutrient load from watershed or reclaimed water sources to be demonstrated through inlake offsets

• Canyon Lake, $OD_{CL} = (L_{SJR} - V_{SJR} * C_{REF}) + (L_{SC} - V_{SC} * C_{REF})$, where

OD_{CL} = Offset demand in Canyon Lake

- L_{SJR} = Measured load to Canyon Lake from San Jacinto River
- V_{SJR} = Measured volume to Canyon Lake from San Jacinto River
- C_{REF} = Reference nutrient concentration
- L_{SC} = Measured load to Canyon Lake from Salt Creek
- \circ V_{SC} = Measured volume to Canyon Lake from Salt Creek
- Canyon Lake overflow to Lake Elsinore, OD_{OVER} = (L_{OVER} V_{OVER}*C_{REF}), where
 - ODover = Offset demand for Canyon Lake overflows to Lake Elsinore
 - LOVER = Measured overflow load from Canyon Lake to Lake Elsinore
 - V_{OVER} = Measured overflow volume from Canyon Lake to Lake Elsinore
 - C_{REF} = Reference nutrient concentration
- Local Lake Elsinore watershed, OD_{zone1} = (L_{Zone1} V_{Zone1}*C_{REF}), where
 - OD_{zonel} = Offset demand for local Lake Elsinore watershed
 - L_{Zonel} = Estimated load from local Lake Elsinore watershed
 - V_{Zonel} = Estimated volume from local Lake Elsinore watershed
 - \circ C_{REF} = Reference nutrient concentration
- Reclaimed water addition, OD_{RW} = V_{RW} * (C_{RW} C_{REF})
 - ODRW = Offset demand for reclaimed water addition to Lake Elsinore
 - V_{RW} = Measured volume of reclaimed water addition to Lake Elsinore
 - C_{RW} = Measured nutrient concentration of reclaimed water addition to Lake Elsinore
 - C_{REF} = Reference nutrient concentration

 Guidance for data to support multiple pathways for compliance demonstration

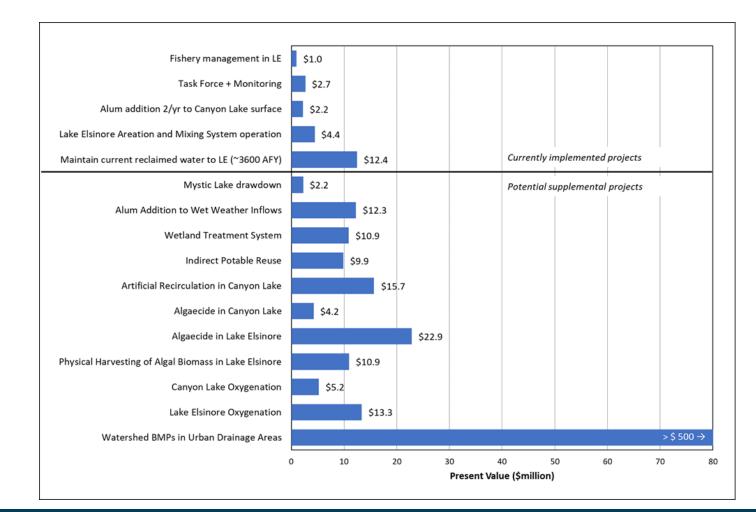
Compliance	Description	Metric				Reclaimed Water
Approach	Description	Metric	Canyon Lake East Bay	Canyon Lake Main Lake	Lake Elsinore	Lake Elsinore
Approach 1 – Monitoring Data Compared to Numeric Targets (Section 7.3.1)	Compliance demonstrated if in-lake monitoring data are equal to or better than numeric target CDFs (see Section 3)	10-yr CDF	1. Average of bi- monthly samples collected at sites CL07 and CL08 (n=60)	1. Average of bi- monthly samples collected at sites CL09 and CL10 (n=60)	1. Single site LE2 sampled 8 times per year (n=80)	
Approach 2 – Reference Condition Model (Section 7.3.2)	Evaluates the current monitoring data against modeled water quality for a reference condition over the same hydrologic period	10-yr CDF	 Average of bi- monthly samples collected at sites CL07 and CL08 (n=60) <u>AND</u> 10-yr AEM3D model simulation of reference condition over the same compliance assessment period 	 Average of bi- monthly samples collected at sites CL09 and CL10 (n=60) <u>AND</u> 10-yr AEM3D model simulation of reference condition over the same compliance assessment period 	 Single site LE2 sampled 8 times per year (n=80) <u>AND</u> 10-yr GLM model simulation of reference condition over the same compliance assessment period 	N/A
External Load show nutrients in concentra		10-yr average concentration at end of pipe	At least 15 wet weather	Monthly TP/TN concentrations		
Approach 4 – In-Lake Offsets (Section 7.3.4)	Meeting WLAs/LAs by reducing internal loads by the amount of external load in excess of reference conditions	10-yr average excess load, in- lake control effectiveness demonstration	Salt Creek USGS Gauge #11070465 runoff volume; flow- weighted samples at Murrieta Road (n=~30)	San Jacinto River USGS Gauge #11070365 runoff volume; flow-weighted samples at Goetz Road (n=~30)	San Jacinto River USGS Gauge #11070500 runoff volume; Canyon Lake Overflow flow- weighted samples (n=~15)	Metered discharge; monthly TP/TN concentrations

Section 8 Monitoring

• Monitoring plan update at start of Phase 2

Table 8-1. Summary of Elements for Inclusion in Revised TMDL Monitoring Program

Waterbody	Elements Recommended for Inclusion in Revised TMDL Monitoring Program
San Jacinto River Watershed	 Re-inclusion of the Cranston Guard Station (see text) Add two new monitoring stations below reference sub-watersheds (see text) Reduce the storm mobilization criteria for the October 1 to December 31 period from a 1.0-inch to a 0.5-inch forecast within 24-hours. The January 1 through April 30 mobilization criteria remains the same.
Lake Elsinore	 Discontinue the afternoon water column profile at each existing monitoring station. Analysis of water column profiles will continue to be performed once in mid to late morning during each monitoring event. Utilize the two EVMWD multi-depth in-lake water quality sondes in combination with fixed depth DO sondes mounted just under the surface at both EVMWD sondes. These data will supplement the single point-in-time water column profiles recorded during each field monitoring event. Incorporate Sentinel-2 satellite imagery (10-m resolution) for chlorophyll-a and turbidity measurements during months in which it is available (September through May), and LandSat 8 satellite imagery (30-m resolution) during all other months (June through August).
Canyon Lake	 Discontinue the afternoon water column profile at each existing monitoring station. Analysis of water column profiles will continue to be performed once in mid to late morning during each monitoring event. Utilize a combination of fixed depth in-lake DO and temperature sondes to supplement single point-in-time water column profiles recorded during each field monitoring event. Add Station CL09 to sites being monitored for full analyte list during each event. Add total and dissolved aluminum to the analyte list for all sites to assess any influences from alum treatments in Canyon Lake. Incorporate Sentinel-2 satellite imagery (10-m resolution) for chlorophyll-a and turbidity measurements during months in which it is available (September through May), and LandSat 8 satellite imagery (30-m resolution) during all other months (June through August)


Section 9 CEQA

- No potential adverse environmental impacts associated with the Proposed Project or reasonably foreseeable methods of compliance
- No action alternative would leave existing TMDLs in place water quality controls implemented under the No Action Alternative and the associated water quality improvements would occur at a functionally equivalent level to the Proposed Project

Section 10 Economic Considerations

• Supplemental project concepts and planning levels cost estimation

