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EXECUTIVE SUMMARY 
Salinization is a growing threat to aquatic life in streams in the Santa Ana region by disrupting 
organisms’ physiological processes and increasing sensitivity to other contaminants. Plans to 
increase wastewater recycling, as well as continued reliance on water diverted from the 
Colorado River, are likely to increase ionic concentrations in streams with urban or agricultural 
land use. 

Because stream salinity can vary due to natural factors, such as geology and climate, we 
developed models to predict natural background levels of ionic parameters. Because these 
models are dynamic, they can reflect changes in natural levels associated with variations in 
season and annual precipitation. Application of the models to streams in the Santa Ana 
watershed show considerable spatial variation, with the lowest salinity levels typically being 
observed in the high elevation headwaters of the Santa Ana, San Bernardino, San Jacinto, and 
San Gabriel mountains. Deviations from modeled expectations can be used to identify streams 
where salinization has occurred. We found evidence of widespread salinization areas with 
urban or agricultural land use, such as the lower elevations of coastal Orange County and the 
Inland Empire.  

Biological response models based on biointegrity indices (specifically the California Stream 
Condition Index [CSCI] for benthic invertebrates and the Algal Stream Condition Indices [ASCIs]) 
showed that elevated ionic concentrations were associated with poor biological conditions. 
These models can support the identification of thresholds for ionic parameters that provide a 
high level of probability of protecting stream biointegrity. We identified reach-specific 
thresholds for all studied parameters (except Magnesium). These thresholds could be adjusted 
to account for season, as well as for drought or years with high levels of precipitation. These 
thresholds can be used to assess stressors on sites, prioritize sites for restoration or additional 
investigation, or in causal assessments. 

In certain circumstances, field-based integrated measures of ionic strength (e.g., specific 
conductivity or total dissolved solids) can serve as a stand-in for lab-based measurements of 
individual ionic parameters. When used as surrogates, integrated measures sometimes 
afforded a higher level of protection, compared to when individual ionic parameters were 
measured. Because field-based measurements are relatively easy to measure, community-
based monitoring groups may be able to identify streams likely to exceed basin plan objectives 
for individual ions without the need for high-cost laboratory analysis. 
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Conclusions 
• Salinization potentially affects up to half the length of streams in the Santa Ana 

watershed, and the problem is likely to get worse in light of changes in climate and 
water use continue. 

• Salinization can negatively impact aquatic life. Numeric thresholds for salinization 
indicators based on levels of biological response have been identified. These thresholds 
may be used by monitoring or management programs to identify streams at risk, 
prioritize sites for protection, and improve causal assessments. 

• Integrated parameters (such as specific conductivity and total dissolved solids) may be 
used as surrogates for ionic parameters (such as chloride or sulfate concentration) to 
assess sites when the latter are unavailable. These surrogates may be particularly cost-
effective for community-based monitoring programs.  
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INTRODUCTION 
Salinization, or the increased concentrations of ionic constituents in freshwaters, is a growing 
problem worldwide (Cañedo-Argüelles et al. 2019, Melles et al. 2023). Increased salinity of 
freshwater can disturb the physiology of aquatic organisms and harm their ability to metabolize 
pollutants (e.g., Velasco et al. 2019, Walker et al. 2020), leading to altered biological 
communities and degraded ecosystem function (Olson and Cormier 2019). Consequently, 
managers may require targets for ionic parameters in order to protect aquatic life in 
waterbodies they manage. 

Several anthropogenic activities are associated with increased salinity of freshwaters. In cold 
regions, road salt application is a major contributor of stream salinization (Hintz and Relyea 
2019), as well as mining, particularly in the southern Appalachian mountains (Timpano et al. 
2015). In semi-arid regions, like southern California and adjacent areas, important factors 
include irrigation with imported, high-salinity Colorado River water, aquifer depletion, or 
groundwater contamination (Lee et al. 1993, Cardona et al. 2004, Olson 2019). Climate change 
is likely to increase the severity and extent of stream salinization due to changes in 
precipitation and increases in evapotranspiration (Olson 2019, Albano et al. 2022, Bolotin et al. 
2023). 

Establishing targets for naturally occurring constituents, such as ions, requires an understanding 
of natural background levels, which may vary considerably from one waterbody to another 
(Hawkins et al. 2010, Ode et al. 2016, Cormier et al. 2018, Olson and Cormier 2019). Natural 
factors that influence ionic concentrations in streams include climate (especially precipitation 
and evapotranspiration), geology (such as marine sediments), and topography (e.g., snow 
influence associated with high elevations) (Olson and Cormier 2019, Bolotin et al. 2023). 

Water quality targets should be informed not only by an understanding of natural variability, 
but also by the biological response as parameters increase beyond natural levels (Hawkins et al. 
2010, Cormier et al. 2018). Biological integrity indices provide a convenient and effective tool 
for assessing biological responses to stress (Karr 1991, Rosenberg and Resh 1993, Mazor et al. 
2019). Indices based on benthic macroinvertebrate or algal assemblages have been used to 
identify targets for hydrologic alteration (e.g., Armanini et al. 2011, Mazor et al. 2018) and 
nutrients (e.g., Heiskary and Bouchard 2015, Poikane et al. 2022, Mazor et al. 2022) in California 
and elsewhere. Biological response models are a fundamental line of evidence recommended 
by the EPA for establishing water quality criteria (U.S. Environmental Protection Agency 2000, 
Cormier et al. 2018). Thus, response models that assess changes in California’s biointegrity 
indices (e.g., the California Stream Condition Index [CSCI] for benthic macroinvertebrates, 
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[Mazor et al. 2016], and the Algal Stream Condition Indices [ASCIs, Theroux et al. 2020]) based 
on alterations from natural levels of ionic parameters would help managers identify thresholds 
that protect aquatic life. 

In this study, we identify thresholds following the approach shown in Figure 1. First, we 
developed models that predict natural background levels of ionic parameters in streams 
following the approach of Olson and Cormier (2019). These models allow us to quantify the 
level of ionic alteration by comparing observed levels to levels expected by the models 
(calculated as a ratio of observed-to-expected, or O/E). Second, we calibrated models to assess 
the biological response to ionic alteration. These models calculated the probability of low 
biointegrity index scores as O/E increases. Third, these models were used to identify thresholds 
associated with probabilities representing a range of risk tolerances. Finally, we compared 
thresholds derived for ionic parameters (e.g., chloride) to those derived for field-measured 
integrated measures (e.g., specific conductivity) to see if these parameters could provide 
equivalent protection to parameters requiring laboratory measurement. 

 

Figure 1. A flow chart of the overall approach for the evaluation of biological 
responses to alteration of ionic concentrations in wadeable streams in California. 

1. Develop models to predict background 
reference levels of ionic parameters 

2. Develop models to predict biological 
responses to ionic parameter changes 
from reference 

3. Identify thresholds from biological 
response models  

4. Compare thresholds for integrated 
measures with thresholds for individual 
parameters 
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PART 1: ASSESS REFERENCE LEVELS OF IONS IN 
CALIFORNIA 

Introduction 
Degraded water quality has the potential to negatively affect the biological integrity of streams 
and other waterbodies (Karr 1991, Rosenberg and Resh 1993, Cañedo-Argüelles et al. 2019, 
Velasco et al. 2019). To gain a better understanding of how the alteration of water chemistry 
affects aquatic species, natural background levels need to be estimated to determine how far 
current stream conditions have shifted from natural levels. The variability of water chemistry 
suggests that watershed topographic, geological, and climatic variables need to be considered 
when predicting natural background water quality (Hawkins et al. 2010, Cormier et al. 2018, 
Olson and Cormier 2019). Once the degree of change from natural conditions is quantified, 
ecological responses to the alteration can be assessed, and protective thresholds that minimize 
the likelihood of ecological response may be identified—an approach that has been used for a 
wide range of stressors, such as nutrients and hydromodification, as well as elevated ionic 
concentrations (Poff et al. 2010, Vander Laan and Hawkins 2014, Heiskary and Bouchard 2015, 
Cormier et al. 2018, Mazor et al. 2022).  

Salinization, or the increased concentrations of ionic parameters, is a widespread and growing 
concern with the potential to affect aquatic organisms (Cañedo-Argüelles et al. 2013, 2019, 
Kaushal et al. 2018, Velasco et al. 2019, Mazumder et al. 2021). For example, salinization of 
freshwater streams is known to alter hormone responses, energy metabolism, and other 
physiological processes in fish (Velasco et al. 2019, Walker et al. 2020). Within the Santa Ana 
Basin, a number of aquatic vertebrates are known to be sensitive to salinization, such as the 
Santa Ana sucker, arroyo chub, speckled dace, arroyo toad, and the southwestern pond turtle 
(Moyle 2002, Meador and Carlisle 2007, U.S. Fish and Wildlife Service 2014, Agha et al. 2019). 
Sensitive invertebrates, such as mayflies, are frequently extirpated from sites that have 
increased salinity (Kefford 2019). These losses of sensitive invertebrates can be reflected in 
bioassessment indices based on the composition of benthic macroinvertebrate communities, 
such as the California Stream Condition Index (CSCI; Mazor et al. 2016).  

Salinization could become more pervasive and severe in California due to the direct and indirect 
impacts of climate change (Olson 2019, Bolotin et al. 2023). Direct impacts include increased 
evapotranspiration (Albano et al. 2022), loss of snowmelt related to increased temperatures 
(Hammond et al. 2018), and changes in timing of precipitation (Willis et al. 2021). Indirect 
impacts include more diversion of surface or groundwater, as well as increased water reuse, 
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leading to the discharge of more concentrated effluent (Hendricks et al. 1982, Toze 2006, Bhide 
et al. 2021). 

Climate is a major driver of natural variation in surface water quality (Hawkins et al. 2010, Olson 
2019, Olson and Cormier 2019). In general, high precipitation and snowmelt has a “dilution” 
effect that lowers concentrations of ionic parameters, whereas high air temperatures 
contribute to accelerated evaporation and increased concentrations of solutes in stream 
systems (Olson 2019, Bolotin et al. 2023). Geologic factors are also major drivers of natural 
variation in surface water quality (Olson 2019, Olson and Cormier 2019). Areas with large 
amounts of limestone, for example, may be expected to have greater natural calcium 
concentrations than an area surrounded by granite. Peters (1984) found that annual 
precipitation and rock type were the most important factors affecting the yield of ions in the 
basins studied. Thus, predicting natural levels of ionic parameters requires an understanding of 
static factors, such as watershed geology, and dynamic factors, like antecedent climate 
conditions. In California, which exhibits extreme climatic and geological diversity, this variation 
can be considerable (Willis et al. 2021, Bolotin et al. 2023). 

The basin plan for the Santa Ana River has inland surface water quality objectives for certain 
ionic parameters, such as chloride and sulfate (Regional Water Quality Control Board-Santa Ana 
2019). The objectives in the basin plan date back to the 1971 Interim Water Quality Control 
Plan for the Santa Ana region (Santa Ana Regional Water Quality Control Board and California 
State Water Resources Control Board 1971), which was based on data collection efforts by the 
California Department of Fish and Wildlife, the California Department of Public Health, the 
California Department of Water Resources, and the Santa Ana Watershed Project Authority, 
among other agencies. These data were initially used to characterize baseline conditions, and 
these baseline conditions were described in early versions of the basin plan as non-degradation 
targets (Regional Water Quality Control Board-Santa Ana 2019). The numeric objectives for 
ionic parameters vary from reach to reach based, in part, on geological differences that 
contribute to natural variation in water quality. For example, Day Canyon Creek has a chloride 
objective of 4 mg/L, whereas the mainstem Santa Ana below Seven Oaks Dam (Reach 5) has an 
objective of 20 mg/L. Although the potential impacts of increased ionic concentration on 
aquatic life is well documented (e.g., Cañedo-Argüelles et al. 2013, Kaushal et al. 2018, Walker 
et al. 2020), the narrative statements for these parameters focus instead on other beneficial 
uses, such as human health, agricultural, and industrial uses. 

We modeled natural temporal and spatial variation to predict variation in major ion 
concentrations and integrated measures for streams throughout California, allowing 
management stakeholders to better understand California's natural water quality parameters 
and assist management agencies with their conservation and restoration efforts. We modeled 
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five ionic parameters (i.e., calcium, chloride, magnesium, sodium, and sulfate) and four 
integrated parameters (i.e., alkalinity, hardness, total dissolved solids, and specific conductivity) 
using natural environment factors that influence natural variation in water quality. The 
modeled estimates of these parameters allowed us to determine the amount of alteration from 
natural levels by comparing them to current measured concentrations throughout California. 
These comparisons and natural estimates can be used to establish water quality thresholds for 
aquatic life and to restore stream health. We then evaluated the predictive metrics to 
determine what environmental factors drive natural background levels. This research will 
improve management practices by enhancing the ability of managers to account for natural 
variation in ionic parameters when setting or evaluating objectives, identifying suitable habitat 
for sensitive species, or prioritizing sites for water quality improvements.  

Methods 
This flow chart summarizes steps for the development of models to predict background levels 
of ionic parameters or integrated measures (Figure 2). 
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Figure 2. A flow chart of steps in the development of models to predict 
background levels of ionic parameters or integrated measures. 

  

1. Aggregate and prepare water chemistry 
data 

2. Develop models of ionic parameters 

3. Assess model performance 

4. Assess water quality alteration at 
reference and non-reference sites 

Figure 3 

Figure 4 

6. Compare predictions to known habitat 
requirements for selected vertebrates 

5. Apply model to all NHD+ stream 
segments in California 
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Aggregate and prepare water chemistry data 
In order to prepare a water chemistry data set for analysis, we first acquired water chemistry 
data from national and statewide water quality monitoring programs, and then assigned each 
site to unique catchments in the National Hydrography Dataset Plus (NHD+; McKay et al. 2014). 
We combined sampling events that were repeated within an NHD+ catchment and month by 
averaging values. Finally, we obtained geospatial data that could be used as model predictors or 
as reference screens by joining catchments with the StreamCat dataset (Hill et al. 2016), a 
database of landscape metrics calculated for every stream segment in the NHD+. We 
augmented StreamCat by calculating dynamic climatic predictors by summarizing antecedent 
conditions before each sampling event (Figure 3). 

 

Figure 3. A flow chart summarizing the data preparation process.  

1. Gather water chemistry data from national and statewide 
monitoring programs 

2. Match sites to NHD+ catchments 

3. Eliminate repeated samples within a catchment and month  

4. Acquire geospatial data 

5. Identify reference sites 
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Data gathering 
We modeled how California's natural water quality varies among individual stream segments 
over time, using water quality data from the Contiguous United States obtained from 
bioassessment databases. 

These databases included the California Environmental Data Exchange Network (CEDEN, 
https://ceden.waterboards.ca.gov/), the National Rivers and Streams Assessment (NRSA, 
https://www.epa.gov/national-aquatic-resource-surveys/nrsa), and the National Water-Quality 
Assessment Project (NAQWA, https://www.usgs.gov/mission-areas/water-
resources/science/national-water-quality-assessment-nawqa), as well as data gathered in Olson 
and Cormier (2019). We used data from the contiguous United States to aid in the development 
of our water quality models for a better representation of the range of environments across 
spatially heterogeneous California. 

From these sources, we extracted measurements of nine water quality parameters:  

• Individual ionic parameters: 

o Calcium (mg/L) 

o Chloride (mg/L) 

o Magnesium (mg/L) 

o Sulfate (mg/L) 

o Sodium (mg/L) 

• Integrated measures 

o Alkalinity as CaCO3 (mg/L) 

o Hardness as CaCO3 (mg/L) 

o Total dissolved solids (mg/L) 

o Specific conductivity (µS/cm) 

None of the aggregated data was excluded based on quality assurance (QA) information. QA 
codes were available for data from the CEDEN database. Over 99.5% of all data points either 
had no QA flags or were flagged for violations unlikely to substantially affect measurements 
(e.g., holding time violations, dilutions performed during measurement, etc.). Of those with the 
potential to greatly affect measurements, the most common violation was unacceptable drift 
checks (affecting 8 specific conductivity measurements). No more than one or two samples for 

https://ceden.waterboards.ca.gov/
https://www.epa.gov/national-aquatic-resource-surveys/nrsa
https://www.usgs.gov/mission-areas/water-resources/science/national-water-quality-assessment-nawqa
https://www.usgs.gov/mission-areas/water-resources/science/national-water-quality-assessment-nawqa
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each analyte were affected by other violations with the potential to affect measurements (e.g., 
poor matrix spike recovery, blank contamination, or high variability among lab replicates).  

Matching sites to NHD+ catchments 
In order to associate sampling locations with geospatial data used as predictors in our water 
quality models, we matched each site to a catchment in the NHD+ (McKay et al. 2014). Sites 
were matched by overlaying our sample locations with NHD+ catchments to determine the 
catchment’s unique identifier (i.e., FEATUREID). Sites could then be matched with the 
corresponding unique identifier in the StreamCat dataset (i.e., COMID) to obtain additional 
geospatial data. Sites that were unable to be matched to a catchment were excluded from 
further analysis. 

Although sites may not have been evenly distributed within a catchment, we assumed that all 
samples were equally representative of water quality conditions within each stream segment. 
All segments that had at least one matching site were used in analysis. 

Eliminating repeated samples within a catchment and month 
We took steps to eliminate sample bias and duplication. We removed duplicate site 
observations sampled during the same month and in the same stream catchment. The retained 
sample was selected at random to prevent a bias caused by over-representing sites that were 
repeatedly sampled. Sites with values below the method detection limit were replaced with a 
value of zero. 

Acquiring geospatial data 
Once matched to a catchment, we extracted geospatial data from the StreamCat dataset (Hill et 
al. 2016). We acquired two kinds of geospatial data from StreamCat: 1) metrics that 
characterize natural gradients that could influence ionic concentrations (predictors) and 2) 
metrics that characterize human disturbance (human activities). Natural gradient metrics were 
used as predictors in our models, and human disturbance metrics were used to identify 
minimally disturbed reference sites. All StreamCat variables evaluated in this study are 
presented in Table 1. Additionally, we determined the Omernik Level 3 ecoregion (Omernik and 
Griffith 2014) of each site based on its location. StreamCat defines a catchment as an area that 
drains directly to an NHD+ stream segment and defines a watershed as a set of connected 
catchments that flow to a focal point (Hill et al. 2016).
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Table 1. StreamCat variables used in model development. All variables were evaluated both at the watershed and 
catchment scales. “Predictor variables” characterize natural gradients and were used as candidate predictors in 
random forest models, whereas “Reference screens” characterize human activity and were used to identify 
reference sites. 

Type Description Variable name Unit Use 
Climate Evapotranspiration 

from PRISM 
1- and 2-month 
values, and 3-,6-, and 
12-month averages 

֯C Predictor 

Climate Precipitation from 
PRISM 

1- and 2-month 
values, and 3-,6-, and 
12-month averages 

mm Predictor 

Climate Mean Temperature 
from PRISM 

1- and 2-month 
values, and 3-,6-, and 
12-month averages 

֯C Predictor 

Climate Maximum 
Temperature from 
PRISM 

1- and 2-month 
values, and 3-,6-, and 
12-month averages 

֯C Predictor 

Climate 30-year normal mean 
precipitation in 
watershed 

PrecipWs mm Predictor 

Geology Mean soil erodibility 
of soils within 
watershed on 
agricultural land 

AgKffactWs Unitless Predictor 

Geology Mean % aluminum 
oxide within 
watershed 

Al2O3Ws % Predictor 

Geology Mean percent 
Calcium Oxide within 
watershed 

CaOWs % Predictor 
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Type Description Variable name Unit Use 
Geology Mean percent clay 

content within 
watershed 

ClayWs % Predictor 

Geology Mean lithological 
uniaxial compressive 
strength within 
watershed 

CompStrgthWs Mpa Predictor 

Geology Mean lithological 
ferric oxide in 
watershed 

Fe2O3Ws % Predictor 

Geology Mean lithological 
hydraulic conductivity 
in watershed 

HydrlCondWs um/s Predictor 

Geology Mean lithological 
potassium oxide in 
watershed 

K2OWs % Predictor 

Geology Mean soil erodibility 
within watershed 

KffactWs Unitless Predictor 

Geology Mean magnesium 
oxide in watershed 

MgOWs % Predictor 

Geology Mean sodium oxide 
in watershed 

Na2OWs % Predictor 

Geology Mean nitrogen in 
watershed 

NWs % Predictor 

Geology Mean organic matter 
in watershed 

OmWs %/weight Predictor 

Geology Mean phosphorous 
oxide in watershed 

P2O5Ws % Predictor 



 

12 
 

Type Description Variable name Unit Use 
Geology Alkaline intrusive 

volcanic rock in 
watershed 

PctAlkIntruVolWs % Predictor 

Geology Alluvium and fine 
textured coastal 
sediment in 
watershed 

PctAlluvCoastWs % Predictor 

Geology Carbonate residual 
material in watershed 

PctCarbResidWs % Predictor 

Geology Coarse coastal zone 
sediment in 
watershed 

PctCoastCrsWs % Predictor 

Geology Colluvial sediment in 
watershed 

PctColluvSedWs % Predictor 

Geology Coarse eolian 
sediment in 
watershed 

PctEolCrsWs % Predictor 

Geology Fine eolian sediment 
in watershed 

PctEolFineWs % Predictor 

Geology extrusive volcanic 
rock in watershed 

PctExtruVolWs % Predictor 

Geology Coarse textured 
glacial outwash and 
glacial lake sediment 
in watershed 

PctGlacLakeCrsWs % Predictor 

Geology Fine textured glacial 
lake sediment in 
watershed 

PctGlacLakeFineWs % Predictor 

Geology Glacial till, clayey in 
watershed  

PctGlacTilClayWs % Predictor 
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Type Description Variable name Unit Use 
Geology Coarse textured 

glacial till in 
watershed 

PctGlacTilCrsWs % Predictor 

Geology Loamy glacial till in 
watershed 

PctGlacTilLoamWs % Predictor 

Geology Peat and much hydric 
soils in watershed 

PctHydricWs % Predictor 

Geology non-carbonate 
residual material in 
watershed 

PctNonCarbResidWs % Predictor 

Geology Saline like sediment 
in watershed 

PctSalLakeWs % Predictor 

Geology Silicic residual 
material in watershed 

PctSilicicWs % Predictor 

Geology Mean permeability of 
soils in watershed 

PermWs cm/hr Predictor 

Geology Mean depth to 
bedrock in watershed 

RckDepWs cm Predictor 

Geology Sand content in 
watershed 

SandWs % Predictor 

Geology Silicon dioxide 
content in watershed 

SiO2Ws % Predictor 

Geology Sulfur content in 
watershed 

SWs % Predictor 

Hydrology Ground water 
discharge into 
streams in watershed 
ratio 

BFIWs % Predictor 
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Type Description Variable name Unit Use 
Hydrology Mean seasonal water 

table depth in 
watershed 

WtDepWs cm Predictor 

Landcover Barren land cover in 
watershed 

PctBl2016Ws % Predictor 

Landcover Evergreen forest 
landcover in 
watershed 

PctConif2016Ws % Predictor 

Landcover Deciduous forest land 
cover in watershed 

PctDecid2016Ws % Predictor 

Landcover Grassland/herbaceou
s landcover in 
watershed 

PctGrs2016Ws % Predictor 

Landcover Herbaceous wetland 
cover in watershed 

PctHbWet2016Ws % Predictor 

Landcover Ice/snow land cover 
in watershed 

PctIce2016Ws % Predictor 

Landcover Mixed 
deciduous/evergreen 
forest cover in 
watershed 

PctMxFst2016Ws % Predictor 

Landcover Open water land over 
in watershed 

PctOw2016Ws % Predictor 

Landcover Shrub/scrub land 
cover in watershed 

PctShrb2016Ws % Predictor 

Landcover Watershed area that 
is water 

PctWaterWs % Predictor 

Landcover Woody wetland land 
cover in watershed 

PctWdWet2016Ws % Predictor 
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Type Description Variable name Unit Use 
Topography Mean watershed 

elevation 
ElevWs m Predictor 

Topography Mean composite 
topographic index in 
watershed 

WetIndexWs Unitless Predictor 

Human 
activity 

Density of canals, 
ditches, or pipelines 
within watershed 

CanalDensWs km/km2 Reference 
screen 

Human 
activity 

Density of 
georeferenced dams 
within watershed 

DamDensWs #/km2 Reference 
screen 

Human 
activity 

Total possible volume 
of all reservoirs in 
watershed 

DamNIDStorWs m3/km2 Reference 
screen 

Human 
activity 

Normal volume of all 
reservoirs in 
watershed 

DamNrmStorWs m3/km2 Reference 
screen 

Human 
activity 

Density of mines in 
watershed 

MineDensWs #/km2 Reference 
screen 

Human 
activity 

Crop land use in 
watershed 

PctCrop2016Ws % Reference 
screen 

Human 
activity 

Hay land use in 
watershed 

PctHay2016Ws % Reference 
screen 

Human 
activity 

Mean impervious 
surfaces in 
watershed 

PctImp2011Ws % Reference 
screen 

Human 
activity 

Developed, high-
intensity land use in 
watershed 

PctUrbHi2016Ws % Reference 
screen 
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Type Description Variable name Unit Use 
Human 
activity 

Developed, low-
intensity land use in 
watershed 

PctUrbLo2016Ws % Reference 
screen 

Human 
activity 

Developed, medium-
intensity land use in 
watershed 

PctUrbMd2016Ws % Reference 
screen 

Human 
activity 

Developed, open 
space land use in 
watershed 

PctUrbOp2016Ws % Reference 
screen 

Human 
activity 

Density of road-
stream intersections 
multiplied by NHD+ 
slope in watershed 

RdCrsSlpWtdWs (Crossings*slope / 
km2) 

Reference 
screen 

Human 
activity 

Density of road-
stream intersections 
in watershed 

RdCrsWs crossings/km2 Reference 
screen 

Human 
activity 

Density of roads in 
watershed 

RdDensWs km/km2 Reference 
screen 
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Identify reference sites 
We used StreamCat data to identify reference sites minimally affected by human activity, 
following the procedure in Ode et al. (2016). Any site that failed one or more of the thresholds 
in Table 2 was not considered reference. Once screened, sites with exceptionally high ionic 
parameter values were further evaluated in Google Earth. This screen often provided evidence 
of human impact or natural (but unusual) sources of ions (e.g., hot springs or evaporite 
deposits) not detected in the initial reference screening. Disturbances included tidal influence, 
cattle grazing, industrial complexes, and excessive erosion in an area. If evidence of a 
disturbance was found, the site was no longer considered reference and was removed.  

Table 2. Criteria used to identify reference sites from StreamCat data, adapted 
from Ode et al. (2016) 

Reference screen Threshold 

Agricultural landcover in watershed or 
catchment 

<3% 

Urban land cover in watershed or 
catchment 

<3% 

Developed open space (i.e., Code 21) 
in the watershed or catchment 

<5% 

Dam density in the watershed or 
catchment 

<2/km2 

Road density <2 km/km2 

Road crossings in the watershed <10/km2 

Road crossings in the catchment <5/km2 

Develop models of ionic parameters 
To develop random forest models to predict reference levels of ionic parameters, we followed 
the steps shown in Figure 4. First, we split reference sites into training (80%) and testing (20%) 
data sets. Training sites were used to calibrate models, whereas the testing data sets were 
withheld to evaluate model performance characteristics with independent data. The subsets 
were stratified by the eighty-five Level 3 Ecoregions (Omernik and Griffith 2014), ensuring that 
major ecoregions were equally represented in the calibration and validation data sets.  



 

18 
 

 

Figure 4. Steps in the development of random forest models of reference levels of 
ionic parameters. 

Once we divided the reference data into training and testing subsets, we used the training data 
to build random forest models for each parameter. We used the randomForest function from 
the randomForest package in R for all random forest models (Liaw and Wiener 2002, R Core 
Team 2022). Each model was initially run with all predictors present (predictors in Table 1). We 
used recursive feature elimination (RFE) in the caret package in R (Kuhn 2020) to select the 
simplest subset of predictors that yielded a model with comparable accuracy to the all-
predictor model. RFE is a backwards stepwise process that removes the least important 
predictors until model accuracy (measured as percent variance explained) declines. Five 
variables were dropped at each step. An evaluation of the stability of variable selection using 
this method was completed by Fox et al. (2017) determining that the "out-of-bag" (OOB) 
performance remained steady until minimum variables remained. 

1. Split reference sites into training and testing data sets 

2. Calibrate a random forest model with training data using all 
predictors 

3. Select the most important variables using recursive feature 
elimination 

4. Recalibrate the final model using the selected set of 
predictors 
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Assess model performance 
We assessed model performance by looking at the accuracy and precision of our modeled 
results. To determine the accuracy and precision values, we used pseudo-R2, root mean 
squared error (RMSE), and out-of-bag predictions for each random-forest model. Predicted 
values from the random forest models were compared to observed values in the calibration 
and validation reference data sets. Out-of-bag (OOB) predictions, generated when random 
forest created a subset of trees withholding the sites in question, were used to assess 
calibration performance. This validation approach allowed us to use the OOB predictions to 
measure model performance independent of the sample data used to train the model. Linear 
regressions comparing observed to expected values were calculated. Model precision was 
estimated with the regression's R2 value; larger values indicated better precision. Model 
accuracy was assessed using the slope and intercept of the regression; intercepts close to zero 
indicated higher accuracy, and slopes close to 1 indicated that model performance is 
consistently accurate across a range of conditions. These model performance parameters were 
summarized for the entire contiguous United States. Model performance was also assessed for 
California sites alone following this procedure. 

Model performance was also evaluated for spatial bias by plotting model residuals on a map, 
depicting any geographic patterns in the model errors. The residuals were calculated by 
subtracting the predicted values from the sites' observed values. If the areas with insufficient 
predictive power were all located in similar geographic regions, that indicates potential 
geographic bias in our model. If the sites with insufficient predictive power were equally spread 
throughout geographic locations, our model had less likelihood of geographical bias. 

Assess water quality alteration at reference and non-
reference sites 
We used the models to generate predictions for all stream segments in California with 
observations of ionic parameters, and quantified differences as percent change (100 * observed 
divided by expected). We plotted these measures of change to identify regions of California 
where alteration was more pervasive or severe.  

Apply models to all NHD+ segments in California 
In order to obtain natural background estimates for California streams, we applied our models 
to all stream segments in California. The model application, and map generation of expected 
natural levels, were possible because StreamCat data is available for almost every NHD+ 
segment in California. These predictions are available from 
https://sccwrp.shinyapps.io/RB8_Threshold.  

https://sccwrp.shinyapps.io/RB8_Threshold
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To evaluate inter- and intra-annual variability, we calculated averages for each analyte for each 
season in wet, dry, and normal years. First, we acquired monthly precipitation data from the 
weather station at the John Wayne Airport in Santa Ana (NOAA Weather Station 
USW00093184; https://www.ncdc.noaa.gov/cdo-
web/datasets/GHCND/stations/GHCND:USW00093184/detail). Then, we calculated total 
precipitation for each calendar year from 2001 to 2019 was calculated. Based on the annual 
total precipitation, we divided the years into wet, normal, and dry thirds based on cutoff values 
of 6.9 and 10.0 inches of rainfall per year. Finally, we then compared the average values by 
subtracting dry years from wet years (i.e., inter-annual variation) and dry seasons from wet 
seasons (i.e., intra-annual variation); the dry season was defined as April through September, 
and the wet season as October through May. We mapped these differences to determine if 
there were spatial patterns to this variation.  

To see if the John Wayne Airport weather data was typical of other portions of the watershed, 
we queried data from Ontario International Airport (NOAA Weather Station USW00003102), 
Lake Elsinore (USC00042805), Newport Harbor (USC00046175), and Big Bear Lake 
(USC00040741). Overall, patterns were highly consistent among the different weather stations, 
particularly during extremely wet (e.g., 2010) or dry (e.g., 2007) years. However, the one high 
elevation station (i.e., Big Bear Lake) diverged from the other stations during more moderate 
conditions (Table 3). Therefore, although the model predictions are no less accurate in higher 
elevations, the mean summaries we calculated may be less precise than in low elevation areas. 

Table 3. Annual precipitation in inches at 5 weather stations in the Santa Ana 
watershed. Cells are colored on a gradient of red (drier) to blue (wetter) to 
indicate the total precipitation that occurred that year, ranked within each station.  

Year 
Big Bear 
Lake Elsinore 

Newport 
Harbor 

Ontario Intl 
Airport 

John Wayne 
Airport 

2001 12.2 11.63 13.34 14.13 13.19 
2002 10.35 4.65 5.05 6.19 5.12 
2003 22.63 12.14 8.89 10.59 8.55 
2004 12.7 15.34 8.48 13.71 15.21 
2005 34.87 26.18 12.28 21.21 16.4 
2006 13.96 6.86 4.08 10.33 7.28 
2007 8.19 0.33 1.37 6.56 4.27 
2008 19.72 5.1 5.59 12.24 10.51 
2009 15.7 8.39 2.9 8.61 5.76 
2010 43.57 26.83 11.01 21.7 24.6 
2011 18.2 10.81 4.81 10.25 7.85 
2012 11.62 6.94 4.91 8.26 6.89 
2013 10.79 3.36 2.44 3.71 3.02 

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00093184/detail
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00093184/detail
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Year 
Big Bear 
Lake Elsinore 

Newport 
Harbor 

Ontario Intl 
Airport 

John Wayne 
Airport 

2014 18.49 8.15 3.65 9.38 6.42 
2015 11.86 5.61 5.02 8.68 6.5 
2016 21.95 9.65 6.49 10.47 9.95 
2017 12.06 12.25 12.02 10.85 9.7 
2018 18.12 7.29 7.4 8.11 8.32 
2019 33.78 19 13.33 18.34 18.84 

Comparison predicted values to known habitat 
requirements for selected vertebrate species 
We identified three aquatic vertebrate species found in the Santa Ana watershed with known 
tolerances to chloride, specific conductivity, and sulfate. Meador and Carlisle (2007) reported 
weighted averages of observed water quality values where North American fish species were 
observed (Table 4). We used these values to determine the frequency (that is, percent of 
months between 2001 and 2019) with which each reach in the Santa Ana watershed would 
have suitable water quality for each species. We compared these maps to historical and 
present-day HUC12-scale distributions of each taxon reported in the PISCES database (Santos et 
al. 2014; https://pisces.ucdavis.edu/). 

Table 4. Tolerance values of three fish species found in the Santa Ana watershed 
for three ionic parameters. Tolerance values are weighted averages reported in 
Meador and Carlisle (2007). 

Species 
name 

Common 
name 

Chloride 
(mg/L) 

Sulfate 
(mg/L) 

Specific 
conductivity 
(µS/cm) 

Catostomus 
santaanae 

Santa Ana 
sucker 

82 89 1046 

Gila orcutti Arroyo 
chub 

71 81 1039 

Rhinichthys 
osculus 

Speckled 
dace 

28 75 483 

https://pisces.ucdavis.edu/
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Results 

Aggregation of water quality data 
Aggregation of national and statewide monitoring databases yield data from 8,588 potential 
reference stream segments, 11% of which were in California (Table 5). Reference data sets 
were largest for specific conductivity (which had over 9,000 reference sites for modeling), 
followed by chloride (over 2,000 reference sites). Data sets were smallest for TDS and hardness 
(each of which had under 500 reference sites; Table 6). We withheld a random subset of 20% of 
the sites at both the national (Figure 5) and California (Figure 6) scales for model validation 
following Olson and Cormier (2019).  

Table 5. Data sources and number of sites available for model development. 
NAQWA: National Water-Quality Assessment Project. NRSA: National Rivers and 
Streams Assessment. CEDEN: California Environmental Data Exchange Network. 

Program Extent # unique 
stream 
segments 

# reference 
sites 
nationwide 

# reference 
sites in 
California 

NAQWA Nationwide 112 1378 0 

NRSA Nationwide 4166 457 23 

CEDEN California 2433 976 976 

Olsen and 
Cormier 
(2019) 

Nationwide 1877 6864 0 
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Table 6. Number of sites available for modeling and analysis for each parameter. 

Parameter 
Total sites – 
California 

Total sites – 
Nationwide 

Reference 
sites – 
California 

Reference 
sites – 
Nationwide 

Cl 9643 15,426 611 2238 
SO4 4478 6834 502 1704 
Na 8244 12,786 232 1496 
Ca 8562 13,506 258 1558 
Mg 8558 13,504 258 1558 
TDS 8873 9069 247 429 
Hardness 8271 5375 415 493 
Alkalinity 2053 3337 546 1106 
Specific 
conductivity 

10,880 28,470 944 9575 

 

 

Figure 5. Nationwide sites used in model development or evaluation.



24 
 

 

Figure 6. Sites from California used in model development or evaluation. 

Model performance 
In general, geologic factors were less important than climatic factors or watershed morphology 
in predicting reference levels of ionic parameters. Several factors were selected for 9 models: 
three measures of antecedent precipitation, a measure of antecedent temperature, the 
amount of sulfur-bearing geology in the watershed, and the baseflow index (a prediction of dry 
weather streamflow based on watershed area and long-term precipitation; Wolock 2003). 
Among climatic predictors, those reflecting antecedent conditions over the previous 12 months 
were more important than those reflecting more short-term antecedent conditions, as well as 
those based on long-term average conditions. The relative importance of selected variables in 
the final models is shown in Figure 7. 
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Figure 7. Importance of selected predictors in each of the nine models of 
reference levels of ionic parameters. Blank cells indicate that the predictor was 
not selected for that model. Abbreviations are in Table 1. 

All models had relatively good predictive power, as indicated by high pseudo-R2. The worst 
performance was for the Sodium model, which had a pseudo-R2 of 0.63.The models performed 
very well when validated at the California scale, with Pearson correlation coefficients (r2) values 
between observed to predicted values at validation sites ≥0.7 for all analytes, with the 
exception of the alkalinity model at validation sites (Table 7). The slope values close to 1 and 
intercept values close to 0 showed that the model predictions were accurate, precise, and 
consistent. 
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Table 7. Model performance statistics across all analytes at the nationwide and California (CA) scale. Cal: 
Calibration (training) data set. Val: Validation (testing) data set. N ref: Number of reference sites in the Cal or Val 
data sets. OE r2: Squared Pearson correlation cofficient between observed and expected (i.e., predicted by 
model) values. OE Slope: Slope of a regression between observed and expected values. OE Slope SE: Standard 
error of the slope of a regression between observed and expected values. OE Intercept: Intercept of a regression 
between observed and expected values. OE Intercept SE: Standard error of the intercept from a regression 
between observed and expected values. 

Parameter Set Scale N 
ref 

OE 
r2 

OE 
Slope 

OE 
Slope 
SE 

OE 
Intercept 

OE 
Intercept 
SE 

Mg Cal CA 209 0.98 1.06 0.01 -0.9 0.25 
Mg Val CA 49 0.95 1.01 0.03 -0.6 0.91 
Mg Cal Nationwide 1247 0.81 1.55 0.01 -0.45 0.17 
Mg Val Nationwide 311 0.88 0.98 0.02 -0.08 0.25 
Ca Cal CA 211 0.97 1.06 0.01 -1.85 0.57 
Ca Val CA 48 0.94 1.02 0.04 -1.63 2 
Ca Cal  Nationwide 1247 0.75 1.03 0.02 -0.75 0.45 
Ca Val Nationwide 311 0.88 0.99 0.02 -0.61 0.6 
Na Cal CA 188 0.97 1.07 0.01 -1.38 0.31 
Na Val CA 44 0.92 1.09 0.05 -1.09 1.26 
Na Cal Nationwide 1198 0.63 1.05 0.02 -0.45 0.25 
Na Val Nationwide 298 0.66 1.05 0.04 -0.32 0.51 
Cl Cal CA 497 0.98 1.11 0.01 -0.93 0.12 
Cl Val CA 114 0.80 1.14 0.05 -1.11 0.7 
Cl Cal Nationwide 1791 0.83 1.09 0.01 -0.48 0.1 
Cl Val Nationwide 447 0.76 1.05 0.03 -0.4 0.2 
SO4 Cal CA 403 0.95 1.14 0.01 -4.39 0.88 
SO4 Val CA 99 0.73 1.48 0.09 -10.75 5.14 
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Parameter Set Scale N 
ref 

OE 
r2 

OE 
Slope 

OE 
Slope 
SE 

OE 
Intercept 

OE 
Intercept 
SE 

SO4 Cal Nationwide 1365 0.70 1.07 0.02 -0.74 0.66 
SO4 Val Nationwide 339 0.75 1.41 0.05 -3.81 1.43 
TDS Cal CA 201 0.95 1.08 0.02 -23.22 5.76 
TDS Val CA 46 0.78 1.08 0.09 -2.85 26.37 
TDS Cal Nationwide 345 0.80 1.01 0.03 -0.9 6.66 
TDS Val Nationwide 84 0.85 1.1 0.05 -9 11.6 
Sp.Cond Cal CA 745 0.97 1.08 0.01 -21.41 2.66 
Sp.Cond Val CA 119 0.78 1.01 0.04 -3.43 0.04 
Sp.Cond Cal Nationwide 7661 0.82 1.03 0.01 -6.22 1.54 
Sp.Cond Val Nationwide  1914 0.81 1.03 0.01 -4.35 3.33 
Hardness Cal CA 334 0.98 1.04 0.01 -6.36 1.61 
Hardness Val CA 81 0.73 1.09 0.07 0.12 14.02 
Hardness Cal Nationwide 396 0.86 1 0.02 -1.7 3.28 
Hardness Val Nationwide 97 0.76 1.09 0.06 -1.65 11.01 
Alkalinity Cal CA 438 0.96 1.13 0.01 -14.38 1.37 
Alkalinity Val CA 108 0.73 1.21 0.07 -18.32 8.84 
Alkalinity Cal Nationwide 631 0.73 1.08 0.03 -7.16 2.59 
Alkalinity Val Nationwide 221 0.65 1.13 0.06 -14.12 5.49 
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Application of the models to sites in the Santa Ana basin showed that most parameters showed 
lower concentrations in the high-elevation headwaters of the San Gabriel, San Bernardino, and 
San Jacinto, as well as in larger waterbodies in lower elevations (e.g., the mainstem of the Santa 
Ana River; Figure 8, Figure 9). In contrast, smaller tributaries in lower elevations (e.g., the Chino 
Hills) had higher concentrations of several analytes. 

An exploration of unexpectedly high Chloride predictions  
Results for Chloride show an unusual pattern with very high expected values in portions of 
Riverside County, specifically, streams northeast of Hemet (e.g., Poppet Creek and Mellor 
Creek), and streams near Woodcrest (e.g., Goldenstar Canyon and Mockingbird Canyon; Figure 
8). Predictions for these streams are about 100 mg/L, whereas most other streams in the Santa 
Ana watershed are predicted to have concentrations below 65 mg/L. Predictions are sharply 
lower at adjacent tributaries and downstream reaches—a pattern not seen with other analytes 
(Figure 8).  

We were unable to evaluate the accuracy of these predictions. None of the streams with high 
predictions near Hemet have been sampled, and thus we have no data to evaluate the accuracy 
of these predictions in that region. For streams near Woodcrest, data from two sites were 
available (i.e., 801M16861 in Goldenstar Canyon, and 801M16957 in Mockingbird Canyon). 
Both sites had high values reported (i.e., 460 mg/L at Goldenstar and 290 at Mockingbird). 
However, both sites drain developed watersheds that receive both agricultural and urban 
runoff, and thus the high values may not be from strictly natural sources. 

We were unable to identify factors that produced these high predictions at these streams. 
Factors that contribute to high predictions, such as low precipitation and high temperatures, 
and certain soil conditions are present in these regions, although they are also present at other 
regions with lower predictions. We do not believe these high predictions are errors produced 
during data processing (either during the manipulation of predictor data that was passed on to 
the model, or during the synthesis of model predictors that were used to generate the map in 
Figure 8).  

Further investigation is needed to determine whether high predictions of Chloride in portions 
of the Santa Ana watershed are accurate, and what factors are driving these patterns. These 
investigations may include additional review of training data for outliers, as well as collecting 
new samples from Poppet or Mellor Creek, where reference or near-reference conditions are 
likely to occur.  
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Figure 8. Average predicted concentrations for the five ionic parameters in the 
Santa Ana Region. 
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Figure 9. Average predicted concentrations for the four integrated parameters in 
the Santa Ana Region.  
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Assessment of water quality alteration in California 
Extent of alteration of ionic parameters varied from a low of 35% of sites for TDS, to a high of 
65% for sulfate (Table 8). Severe alteration (i.e., observed values greater than 300% of expected 
levels) was most extensive for chloride and magnesium. For most parameters severe alteration 
was most common in the South Coast, the Bay Area, and parts of the Central Valley (Figure 10). 

Table 8. Percent of non-reference sites with elevated levels of ionic parameters, 
relative to reference levels calculated for the month of sampling. 

Analyte No 
increase 

Up to 
150% 

Up to 
300% 

More than 
300% 

Alkalinity 53 31 14 2 
Calcium 43 19 20 18 
Chloride 52 12 11 26 
Hardness 48 21 17 15 
Magnesium 45 17 14 23 
Sodium 55 17 15 13 
Specific 
conductivity 

55 22 15 7 

Sulfate 65 10 11 14 
TDS 35 16 27 22 
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Figure 10. Alteration of water chemistry estimated as the difference between 
observed and predicted levels of ionic parameters. 

Intra- and inter-annual variability in background levels of 
ionic parameters 
Predictions of natural background levels of ionic parameters varied by season and climatic 
condition for all the analytes. Levels were usually higher in the wet season (i.e., October 
through March) than the dry season (Figure 11), likely reflecting the elevated concentrations 
that occur during flushing flows associated with winter storms. However, concentrations were 
lower during years with high rainfall (Figure 12), likely reflecting the dilutionary effect of 
increased flows during summer baseflows. 



 

33 
 

 
Figure 11. Intra-annual differences in predicted natural background levels of ionic 
parameters, calculated as the ratio of mean predict values in the wet season (i.e., 
October through March) over the mean predicted values in the dry season (i.e., 
April through September. 
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Figure 12. Inter-annual differences in predicted natural background levels of ionic 
parameters, calculated as ratio of the mean predicted values in wet years over the 
mean predicted values in wet years. 

In general, the greatest variability in predicted levels across months and years occurred in 
headwater areas, as evident in maps of standard deviations of predicted values in the Santa 
Ana watershed (Figure 13, Figure 14). Exceptions to this pattern include TDS and specific 
conductivity, which was generally most variable in the driest parts of the study area, such as the 
San Jacinto watershed. 
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Figure 13. Standard deviation of predicted concentrations for the five ionic 
parameters in the Santa Ana Region. 
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Figure 14. Standard deviation predicted concentrations for the four integrated 
parameters in the Santa Ana Region. 

Comparison with habitat requirements for selected 
vertebrate species 
In general, headwaters frequently had suitable water quality for the Santa Ana sucker, the 
arroyo chub, and the speckled dace (Figure 15 to Figure 17). In addition to the headwaters, 
main stem Santa Ana, San Antonio Creek, Deer Creek, Santiago Creek, San Timoteo Creek, San 
Diego creek headwaters, and parts of the San Jacinto River were identified as suitable for most 
of the months analyzed. These locations largely corroborate known occurrences of these taxa in 
species management documents (https://pisces.ucdavis.edu), except for the San Jacinto River, 
which is hydrologically disconnected from the rest of the watershed and may not have ever 
supported these species despite providing suitable water quality conditions. Our models appear 
to have overestimated the suitability of smaller tributaries and headwaters because of their 
exclusive focus on ionic parameters. Other factors that affect habitat suitability, such as flow 

https://pisces.ucdavis.edu/
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duration, are ignored by these models. The small headwater streams erroneously identified as 
suitable habitat frequently exhibit ephemeral or intermittent flows, which may be insufficient 
to support most fish taxa.  
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Figure 15. Streams with suitable water quality for the Santa Ana sucker 
(Catostomus santaanae), compared to historical and present-day distribution. 

Figure 16. Streams with suitable water quality for the arroyo chub (Gila orcutti), 
compared to historical and present-day distribution. 
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Figure 17. Streams with suitable water quality for the speckled dace (Rhinichthys 
osculus), compared to historical and present-day distribution. 

Discussion 
This study demonstrates that national data sets can be used to develop models with high levels 
of performance suitable for state or regional applications. Our models performed well, 
explaining more than 70 percent of the variation in each water quality parameter across 
California. Since we created multiple models, including almost all major ions and integrated 
measures, we could look at water quality in greater detail than previous studies. This study 
builds off of Olson and Cormier (2019), who provided a national view of how specific 
conductivity reacts with differing temporal and spatial scales. In addition to expanding their 
effort to address a range of ionic parameters beyond specific conductivity, we took steps to 
bolster the confidence of watershed managers in California in applying these models. First, we 
increased the number of sites in California used for model training, and second, we assessed 
model performance within California, rather than at the national scale.  

Our models' spatial and temporal sensitivity will aid in adjusting aquatic life and water quality 
thresholds for current climate patterns and will allow future water quality responses to climatic 
shifts to be estimated. Our model predictions have the potential to help us understand the 
effects of future climates on California streams. For example, these models can be used to 
estimate the future shifts in natural background water quality in California streams due to 
climate change, similar to work done by Olson and Cormier (2019). In addition to estimating 
future climatic shifts, our model predictions may help researchers study the effects of aquatic 
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stress, metabolic rates, and oxygen demand by providing natural background levels to calculate 
the amount of divergence and its impact on aquatic species. 

Salinization could be affected by climate change through several pathways, a few of which are 
likely to be more pronounced in the Santa Ana watershed and other parts of California. Under 
some scenarios, wet years may become more frequent, with high intensity rain events 
associated with atmospheric rivers becoming more common (Shields and Kiehl 2016). During 
these years, concentrations will likely be lower than normal (Figure 12). However, dry years 
may be more common and warmer overall (Swain et al. 2018, Albano et al. 2022), which could 
drive more saline conditions. Snowmelt, which has a small influence on streamflow in the 
highest elevations of the Santa Ana watershed, is likely to have an even smaller effect in the 
future (Hammond et al. 2018, Bolotin et al. 2023), leading to increased concentrations in 
headwater areas. Climate change may also exacerbate river salinization through sea-level rise 
(Benson et al. 2019, McIver II 2022), although this mechanism is unlikely to affect many stream-
miles in the Santa Ana Watershed. 

The seasonal prediction capabilities of our models provide land managers and researchers with 
a way of identifying streams suffering from freshwater salinization syndrome (FSS). Kaushal et 
al. (2018) argue that freshwater salinization syndrome has many far-reaching effects regarding 
ground and surface water, the quality of drinking water, and ecosystem functions. Given the 
seasonal predictions our models can make, we suggest water quality monitoring should occur 
multiple times a year and consider the sampling year's precipitation levels. These patterns will 
help researchers and managers target areas that need the greatest conservation and 
restoration efforts to decrease the occurrence of freshwater salinization syndrome and the 
metabolic stress on native aquatic organisms.  
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PART 2: EVALUATE BIOLOGICAL RESPONSE TO 
ELEVATED IONIC CONCENTRATIONS 

Introduction 
Water quality targets should be informed not only by an understanding of natural variability, 
but also by the biological response as parameters increase beyond natural levels (Hawkins et al. 
2010, Cormier et al. 2018). Biological response models are one of the key pieces of evidence 
recommended by the U.S. Environmental Protection Agency that regulators should evaluate 
when establishing water quality criteria (Davis and Simon 1995, U.S. Environmental Protection 
Agency 2000, Cormier et al. 2018). These response models require two elements: A measure of 
stress, and a measure of ecological condition. The former is provided by the modeled reference 
expectations of ionic parameters developed in Part 1 of this study: ratios of observed-to-
expected values greater than 1 indicate that a stream has been affected by salinization. 
Measures of ecological condition may be provided by indices of biotic integrity, which provide a 
broad-based measure of aquatic ecosystem health (Karr 1991). California has several 
biointegrity indices that are suited to building biological response models. The California Stream 
Condition Index (CSCI; Mazor et al. 2016) is based on benthic macroinvertebrates, and the Algal 
Stream Condition Indices (ASCIs; Theroux et al. 2020) are based on benthic diatoms (ASCI_D) or 
a hybrid of diatom and soft-bodied algal assemblages (ASCI_H). These indices have already 
been used to model ecosystem responses to flow alteration (Mazor et al. 2018) and 
eutrophication (Mazor et al. 2022). Thus, response models that assess changes in California’s 
biointegrity indices based on alterations from natural levels of ionic parameters would help 
managers identify thresholds that protect aquatic life. 

Benthic macroinvertebrates have well-known responses to stream salinization (Wallace and 
Biastoch 2016, Kefford 2019, Orr et al. 2022). Kefford (2019) hypothesized that the sensitivity of 
mayflies is related to the increased energy burden of maintaining internal osmolar 
concentrations, disruption of pH regulation processes, and direct toxic effects. Several studies 
have also documented a synergistic effect where salinization heightens the toxicity of other 
pollutants (Velasco et al. 2019, Walker et al. 2020).  

Salinity has also been known to be a primary driver of benthic diatom assemblage composition 
(van Dam et al. 1994, Porter-Goff et al. 2013, Noune et al. 2023), although non-diatom algal 
taxa are less well studied (Theroux et al. 2020). Noune et al. (2023) demonstrated that 
increased salinity is associated with a higher frequency of deformities of diatom valves, leading 
to a loss of sensitive species. Salinization not only affects the composition of benthic algal 
communities, it may also reduce stream productivity and photosynthesis rates, potentially 
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exacerbating impacts from eutrophication (Herbst and Blinn 1998) and lead to major changes in 
food web structure (East et al. 2017). Additionally, salt exposure can lead to the proliferation of 
toxin-producing cyanobacteria in eutrophic systems (Osburn et al. 2023). Physiological stress 
and energetic burdens of maintaining internal osmolar concentrations are thought to be the 
primary drivers reducing populations of sensitive algal taxa in salinized environments (Herbst 
and Blinn 1998).  

We followed previous approaches in developing biointegrity response models for the purposes 
of threshold identification (e.g., Heiskary and Bouchard 2015, Mazor et al. 2018, 2022, Poikane 
et al. 2022). First, we compared biointegrity scores to a range of reference-based thresholds to 
classify streams as meeting or not meeting biointegrity goals. At the same time, we calculated 
the ratio of observed-to-expected levels of ionic parameters to characterize levels of 
salinization stress. Then, we calibrated logistic regression models to calculate the probability of 
meeting biointegrity goals as stress increases. We then identified levels of stress associated 
with a range of probabilities (80% to 99%). Finally, we converted these levels of stress to 
thresholds by multiplying them by segment- and month-specific reference levels of the ionic 
parameter. Once these thresholds were identified, we calculated the percentage of sites 
exceeding each threshold in the Santa Ana watershed. In addition, we compared these 
thresholds to basin plan objectives for selected segments.  

Methods 

Conceptual approach 
To evaluate assessment threshold concentrations that are likely to maintain good biological 
integrity, we first assembled a data set to characterize biointegrity and ionic stressors. 
Biointegrity was characterized with three bioassessment indices: the California Stream 
Condition Index (CSCI; Mazor et al. 2016) for benthic macroinvertebrates, and two Algal Stream 
Condition Indices (ASCIs; Theroux et al. 2020) for diatoms (ASCI_D) and two combined 
assemblages (diatoms and soft-bodied algae; ASCI_H). We characterized ionic stressor 
gradients for five ions (chloride, sulfate, sodium, calcium, and magnesium) and four integrated 
measures (TDS, hardness, alkalinity, and specific conductivity) by calculating the ratio of 
observed concentrations over the expected, predicted concentrations (Part 1). We chose a 
stressor gradient that accounted for natural variation and acknowledged that some increases in 
concentrations have bigger impacts in some streams than others. We classified sites as 
attaining or not attaining a biointegrity goal, and then modeled the likelihood of attainment 
based on an ionic indicator using logistic regression, one indicator at a time. Numeric values of 
each ionic indicator associated with a high probability of attaining a range of biointegrity goals 
were then identified. We evaluated several approaches for selecting biointegrity goals, and 
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calculated thresholds for each of these goals. To evaluate these thresholds, we compared them 
to basin plan objectives for selected segments and parameters. Finally, we used the resulting 
thresholds to assess the extent of streams potentially affected by salinization in the Santa Ana 
watershed (Figure 18).

 

Figure 18. A flow chart of steps in the development of models to evaluate 
biological response to elevated ionic concentrations. 

 

1. Gather bioassessment data at sites with 
water chemistry 

2. Calculate change (O/E) in ionic concentration 
from modeled expectation 

3. Assess biointegrity scores against 3 numeric 
goals 

4. Develop biological response models to 
predict likelihood of achieving goal from water 
chemistry alteration 

5. Identify threshold ratios and segment-specific 
thresholds for integrated and ionic 
parameters 

Figure 19 

Compare thresholds to basin 
plan objectives for selected 
segments 

Assess salinization in the 
Santa Ana watershed 
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Gather bioassessment data at sites with water chemistry 
Building from the set of sites with observed ionic parameters in California, we identified the 
subset of these sites where bioassessment data had been collected between 2001 and 2019 
(that is, the dates for which model predictions from Part 1 were available). Biological data was 
extracted from the California Environmental Data Exchange Network (CEDEN, 
https://ceden.waterboards.ca.gov/) and the Storm Monitoring Coalition (SMC, 
https://smc.sccwrp.org/), and were used to calculate CSCI or ASCI scores. Using the predictions 
from models created in Part 1, reference conditions for each ionic parameter (calculated for 
each month from 2001 to 2019) were paired with observed water chemistry data at each 
bioassessment location. This aggregation resulted in a data set of nearly 3000 samples with at 
least one bioassessment index score and one observed ionic parameter (Table 9). These 3000 
samples were collected at over 2000 sites, representing more than 1800 unique stream 
segments.  

Table 9. Number of samples, sites and stream-segments (COMIDs) used to 
develop biological response models.  

Analyte Santa 
Ana 

COMIDs 
California 
COMIDs 

Santa 
Ana 
Sites 

California 
Sites 

Santa 
Ana 

Samples 
California 
Samples 

CSCI 185 1706 259 1970 338 2676 
ASCI_D 94 1250 121 1410 143 1825 
ASCI_H 93 1218 120 1377 142 1787 
Calcium 18 396 18 430 18 463 
Chloride 79 1277 97 1428 112 1803 
Sodium 18 243 18 245 18 258 
Magnesiu
m 

18 320 18 335 18 368 

Sulfate 78 1235 95 1381 106 1656 
Alkalinity 109 1386 139 1587 180 2179 
Hardness 72 1124 87 1263 94 1499 
Sp.Cond 183 1714 258 1986 335 2732 
TDS 42 285 46 342 49 374 

 

Calculate change (O/E) in ionic concentration from 
modeled expectation 
We characterized ionic stressor gradients for every ionic parameter by calculating the ratio of 
observed concentrations over the expected reference concentrations (derived in Part 1). We 

https://ceden.waterboards.ca.gov/
https://smc.sccwrp.org/
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chose this formulation (O/E) over other possible formulations (e.g., O-E or (O-E)/E) because it 
provided a simple and consistent way to characterize alterations of different parameters that 
have different scales, or even different units (e.g., mg/L vs µS/cm).  

Assess biointegrity scores against 3 numeric goals 
Samples were classified as being in either good/intact biological condition or poor/altered 
condition. Several biointegrity goals were used to identify intact or altered condition in order to 
relate those states back to ionic thresholds. We evaluated scores corresponding to the 30th, 
10th, and 1st percentiles at reference sites (Ref30, Ref10, and Ref01, respectively; Mazor et al. 
2016, Theroux et al. 2020). The 10th percentile of the CSCI has been used to identify impaired 
waterbodies in recent versions of the Integrated Report (e.g., California State Water Resources 
Control Board 2022). Every sample was classified as meeting or not meeting each of these 
goals. Numeric values associated with biointegrity goals are presented in Table 10. 

Table 10. Numeric values associated with biointegrity goals. 

Reference percentiles CSCI ASCI_D ASCI_H 
30th  0.92 0.94 0.94 
10th  0.79 0.86 0.86 
1st  0.63 0.75 0.75 

 

Develop biological response models to predict likelihood 
of achieving goal from water chemistry alteration 
We developed logistic regressions to calculate the probability of meeting biointegrity 
thresholds at increasing levels of ionic stress (characterized as ratios between observed and 
expected (O/E) concentrations of ionic parameters). Logistic regression models were created 
with the probability of good biological condition as the response variable and the 
observed/expected ratio as the predictor variable. The glm function in R, with a binomial error 
distribution and a logit link function was used for all logistic regressions (R Core Team 2022). 
Models were developed for every ionic parameter (chloride, sulfate, sodium, calcium, 
magnesium, TDS, hardness, alkalinity, and specific conductivity), bioassessment index (CSCI, 
ASIC_D, ASCI_H), and biointegrity goal (1st, 10th, and 30th percentile; 81 models).  

The accuracy of the models was assessed as the percent of calibration or validation samples 
with biointegrity status consistent with model predictions (i.e., attaining biointegrity goals 
when the model predicted 50% or greater probability of attaining them, and not attaining them 
when the probability was lower). For each model, the data was split into calibration (80%) and 
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validation (20%) subsets. These subsets were done independently of each other, as well as of 
the calibration-validation split used in Part 1; therefore, a site may be used to calibrate one 
model, and to validate another model. Unlike the data used in Part 1, these data included non-
reference sites where stress from salinization was expected to have occurred.  

Identify thresholds for integrated and ionic parameters 

 
Figure 19. Steps in identifying thresholds for integrated and ionic parameters. 

Identify threshold ratio O/E values associated with a range of 
probabilities 
Significant logistic regression models (p < 0.05) for each combination of ionic parameter, 
bioassessment index, and biointegrity goal were then used to identify O/E ratios that were 
predictive of a ≥0.8, ≥0.9, or ≥0.95 probabilities of good intact biological condition occurring 
(Figure 19). First, we established a range of values to evaluate for each O/E ratio for each ion 
(from 1 to a maximum of 15 times expected background levels for alkalinity, 20 hardness, 20 
TDS, 75 chloride, 25 calcium, 40 magnesium, 30 sodium, 40 sulfate, or 15 specific conductivity). 
These ranges were determined by preliminary visual inspection of the data; specifically, we 
plotted the predicted probabilities associated with the O/E ratios in the calibration data set and 
attempted to identify the range where probabilities decreased most rapidly. We then ran the 
models for 1,000 values along this range, as well as 95% confidence limits (as 1.96 times the 
standard error). These increasing O/E values represent a gradient of increasing stress from 
salinization. 

1. Identify threshold ratio O/E values associated with a range of 
probabilities 

2. Attain segment- and month-specific candidate thresholds by 
multiplying threshold ratio by expected values 

3. Summarize each segment’s candidate thresholds across 
climatic and seasonal conditions  
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For each O/E value, we predicted the probability of achieving biointegrity goals; predictions and 
confidence limits were expressed in terms of the linear predictors before transforming into 
probabilities through an inverse-link function. To account for background levels of stress that 
may degrade biointegrity when the ion concentration was at natural levels, model outputs were 
divided by the calculated probability when the O/E was set to one. For example, if the 
probability of good CSCI when chloride was at natural background levels was equal to 0.8, we 
calculated the relative probability at higher levels of chloride by dividing the model predictions 
by 0.8 (transformations were actually calculated on model outputs and confidence intervals 
expressed in the scale of the linear predictors, which were then transformed into probabilities 
using an inverse link function). These relativized probabilities represent the likelihood of 
attaining the biointegrity goal, given background levels of other types of disturbance. Thus, if in 
the previous example, a model predicted a probability of 0.6 when Chloride was elevated by a 
certain degree, the relative probability was calculated as 0.75 (i.e., 0.6/0.8).  

Attain segment- and month-specific candidate thresholds 
The previous step in the analysis results in a threshold ratio O/E that could apply to all stream 
segments, which have a range of expected values (E) that vary depending on the month and 
year. We converted this threshold ratio into a range of segment- and month-specific threshold 
concentrations by multiplying the ratio by the segment- and month-specific expected values. 
For example, if a model identified a threshold ratio of 2, and a stream segment had an expected 
value of 100 for a given month, then the threshold concentration would be 200 for that month. 
These thresholds were calculated for all 2,845 segments in the Santa Ana watershed for every 
month between 2001 and 2019, resulting in 228 thresholds per segment for each of the 9 
analytes, 3 indices, 3 biointegrity goals, and 3 probabilities (over 150 million thresholds total for 
the Santa Ana watershed). 

Summarize each segment’s candidate thresholds across climatic 
and seasonal conditions 
The large number of thresholds calculated for each stream segment underscores the need to 
summarize across climatic and seasonal conditions. We summarized ionic thresholds across 
climatic conditions (wet, dry, and normal years) and sampling period (whether the sample was 
measured in months between April and September or not), as well as an overall average for 
each specific reach. Climatic conditions were calculated by categorizing the years 2001-2019 
into thirds based on annual precipitation. Annual precipitation was obtained from the weather 
station at the John Wayne Airport in Santa Ana (NOAA Weather Station USW00093184; 
https://www.ncdc.noaa.gov/cdo-
web/datasets/GHCND/stations/GHCND:USW00093184/detail). As noted above, this weather 
station is a good indicator of overall conditions in the lower elevations of the Santa Ana 
watershed, whereas higher elevations may show different patterns outside of extremely wet or 

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00093184/detail
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00093184/detail
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extremely dry years. We report these ionic thresholds at concentrations corresponding to 80%, 
90%, and 95% relative probabilities, allowing policy makers to choose their tolerance for the 
risk of failing to meet biointegrity goals.  

Compare thresholds to basin plan objectives for selected 
segments 
In a selected number of segments, we compared the expected conditions of each segment to 
the ionic thresholds expected to protect indices at Ref10 and the Santa Ana Basin Plan 
Objectives (Regional Water Quality Control Board-Santa Ana 2019). We evaluated 10 segments: 
Strawberry Creek and San Jacinto River, North Fork; Big Bear Lake Tributaries: Rathbone 
(Rathbun) Creek; Barton Creek; San Antonio Creek; Chino Creek Reach 1a: Santa Ana River 
confluence to downstream of confluence with Mill Creek (Prado Area); Chino Creek 1b: 
Confluence of Mill Creek (Prado Area) to beginning of concrete-lined channel south of Los 
Serranos Road; San Jacinto River Reach 3: Canyon Lake to Nuevo Road; San Jacinto River Reach 
6: Poppet Creek to Cranston Bridge; Santa Ana River Reach 3: Prado Dam to Mission Blvd in 
Riverside; and Santa Ana River Reach 6: Seven Oaks Dam to Headwaters. Segments were 
chosen where Basin Plan objectives existed, as well as to include segments across multiple 
elevations. 

Assess salinization in the Santa Ana watershed 
In order to assess the extent of salinization in the Santa Ana watershed, we compared mean 
observed values of each ionic parameter against the mean segment-specific thresholds 
identified above. We then calculated the percentage of sites exceeding the threshold for each 
parameter. 

Results 

Relationship between ionic stressors and biointegrity 
indices 
Biointegrity index scores exhibited a negative, but noisy, relationship with ionic stressors 
(Figure 20). Although high index scores were sometimes observed at sites with high ionic stress, 
these observations were rare. At low levels of ionic alteration (e.g., O/E < 1), a wide range of 
bioassessment index scores were observed. This “wedge-shaped relationship” is commonly 
found with biological stress-response models (e.g., Mazor et al. 2018, 2022) because sites may 
be affected by stressors not included in the model, such as other ionic parameters, as well as 
stressors unrelated to salinization (e.g., eutrophication, or habitat alteration). That is, sites 
where a certain ionic parameter is unaltered might have poor biology due to other stressors. 
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Spearman correlations between biointegrity index scores and ionic stressors were always 
negative, ranging from -0.68 (between ASCI_H and Sodium) and -0.18 (CSCI and Alkalinity; Table 
11).  

Table 11. Spearman correlation coefficients between ionic stressors (expressed 
as Observed/Expected ratios) and index scores. 

Analyte CSCI ASCI_D ASCI_H 

Alkalinity -0.18 -0.24 -0.20 

Calcium -0.20 -0.49 -0.51 

Chloride -0.41 -0.49 -0.45 

Hardness -0.29 -0.40 -0.36 

Magnesium -0.21 -0.54 -0.55 

Sodium -0.28 -0.55 -0.68 

Sp.Cond -0.23 -0.35 -0.30 

Sulfate -0.23 -0.40 -0.34 

TDS -0.52 -0.48 -0.42 
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Figure 20. Biointegrity scores in relation to ionic stressor ratios 
(observed/expected concentrations). Black lines represent a fit from a generalized 
additive model; gray ribbons represent the 95% confidence interval around the fit. 
The x-axes have been truncated to highlight areas where the model shows the 
greatest response to ionic gradients. 

Biological response model performance 
Logistic regression models were usually successful in predicting the likelihood of attaining a 
biointegrity goal (Table 12, Figure 21, Figure 22, Table S1). Of the 81 models, 71 of the models 
had statistically significant coefficients (p < 0.05). Magnesium models were unable to predict a 
Ref01 goal for CSCI, ASCI_D or ASCI_H, a Ref10 goal for CSCI or ASCI_D, and a Ref30 goal for 
CSCI (Table S1). Sodium models performed poorly at predicting a Ref01 goal for the ASCI_D and 
ASCI_H, a Ref10 goal for ASCI_H, and Ref30 goal for ASCI_H. Among the models with 
statistically significant coefficients, accuracy ranged from 61% to 74% at calibration sites. 
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Table 12. Performance of biological response models to predict probability of meeting biointegrity goals at 
increasing levels of ionic stress. Only models for the "Ref10" biointegrity goal are shown (results for Ref01 and 
Ref30 goals in Table S1). Cal: Calibration. Val: Validation. P-values are represented as * <0.05, ** <0.01, *** <0.001. 
Note: the total number of calibration and validation samples in this table is less than the number of samples in 
Table 9 because a sample needed to have both chemistry results and bioassessment index scores to be used in 
modeling. 

  # Samples Accuracy 
rate (%) Coefficient Intercept  

Analyte Index Cal Val Cal Val estimate std error estimate std error P 
Alkalinity CSCI 1706 427 63 63 -0.445 0.081 1.018 0.105 *** 
Alkalinity ASCI_D 1335 334 61 63 -0.676 0.106 0.879 0.129 *** 
Alkalinity ASCI_H 1327 332 62 60 -0.643 0.103 1.047 0.130 *** 
Calcium CSCI 364 91 61 62 -0.290 0.069 0.651 0.162 *** 
Calcium ASCI_D 228 58 67 67 -0.726 0.147 0.371 0.252 *** 
Calcium ASCI_H 193 49 69 67 -0.389 0.106 0.234 0.273 *** 
Chloride CSCI 1414 354 70 71 -0.108 0.012 0.974 0.069 *** 
Chloride ASCI_D 1260 315 70 71 -0.164 0.017 0.664 0.073 *** 
Chloride ASCI_H 1219 305 68 69 -0.089 0.012 0.674 0.071 *** 
Hardness CSCI 1176 294 69 68 -0.373 0.041 1.150 0.094 *** 
Hardness ASCI_D 1136 285 67 63 -0.666 0.064 1.125 0.106 *** 
Hardness ASCI_H 1097 275 69 65 -0.585 0.056 1.234 0.106 *** 

Magnesium CSCI 288 73 54 49 0.000 0.001 0.183 0.119 0.904 
Magnesium ASCI_D 152 39 66 69 0.000 0.001 -0.690 0.173 0.776 
Magnesium ASCI_H 117 30 72 73 -0.222 0.065 0.227 0.284 ** 

Sodium CSCI 215 54 66 59 -0.398 0.107 0.836 0.206 *** 
Sodium ASCI_D 83 21 66 76 -1.005 0.368 0.806 0.406 ** 
Sodium ASCI_H 48 12 79 83 -0.144 0.116 0.267 0.386 0.213 
Sp.Cond CSCI 2152 539 66 71 -0.461 0.045 1.041 0.075 *** 



 

52 
 

  # Samples Accuracy 
rate (%) Coefficient Intercept  

Analyte Index Cal Val Cal Val estimate std error estimate std error P 
Sp.Cond ASCI_D 1480 371 65 70 -0.554 0.060 0.868 0.093 *** 
Sp.Cond ASCI_H 1437 360 67 66 -0.456 0.053 0.953 0.091 *** 
Sulfate CSCI 1303 326 69 68 -0.291 0.029 1.046 0.077 *** 
Sulfate ASCI_D 1115 279 65 66 -0.224 0.031 0.421 0.076 *** 
Sulfate ASCI_H 1076 269 65 64 -0.173 0.027 0.543 0.077 *** 

TDS CSCI 291 73 71 74 -0.637 0.099 1.380 0.239 *** 
TDS ASCI_D 263 66 74 68 -0.660 0.127 0.609 0.256 *** 
TDS ASCI_H 263 66 70 73 -0.457 0.093 0.585 0.227 *** 
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Figure 21. Relative probabilities of meeting biointegrity goals at increasing levels 
of ionic stress (defined as the ratio of observed to expected levels of ionic 
concentration, O/E). Dotted lines represent 80%, 90% and 95% relative probability. 
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Figure 22. Relative probabilities of meeting biointegrity goals at increasing levels 
of integrated ionic stress. Dotted lines represent 80%, 90% and 95% relative 
probability. 

The ASCI_D was more sensitive than other indices, resulting in lower observed-to-expected 
thresholds than the other indices (Table 13). In general, integrated parameters were more 
sensitive (i.e., had lower thresholds) than ionic parameters (Figure 23). Chloride was the least 
sensitive parameter overall, with thresholds generally well above those for other parameters, 
across all indices. 
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Table 13. Predicted observed/expected ionic thresholds corresponding to 80%, 
90%, and 95% relative probabilities of meeting biointegrity goals. Only models for 
the "Ref10" biointegrity goal are shown (results for Ref01 and Ref30 goals in 
(Table S 2). The most sensitive index for each analyte is indicated with an asterisk 
(*). NI: Threshold not identified due to poor performance of the biological 
response model. 

Analyte Index 80% probability 90% probability 95% probability 
Alkalinity CSCI 2.18 1.60 1.29 
Alkalinity ASCI_D* 1.64 1.32 1.15 
Alkalinity ASCI_H 1.74 1.38 1.18 
Calcium CSCI 2.63 1.82 1.41 
Calcium ASCI_D* 1.48 1.22 1.10 
Calcium ASCI_H 1.96 1.48 1.22 
Chloride CSCI 6.63 3.89 2.48 
Chloride ASCI_D* 4.04 2.56 1.74 
Chloride ASCI_H 6.93 3.96 2.48 
Hardness CSCI 2.56 1.80 1.40 
Hardness ASCI_D* 1.74 1.36 1.19 
Hardness ASCI_H 1.93 1.48 1.23 
Magnesium CSCI NI NI NI 
Magnesium ASCI_D NI NI NI 
Magnesium ASCI_H* 2.80 1.90 1.43 
Sodium CSCI 2.22 1.61 1.29 
Sodium ASCI_D* 1.35 1.17 1.09 
Sodium ASCI_H 3.96 2.45 1.73 
Sp.Cond CSCI 2.14 1.57 1.29 
Sp.Cond ASCI_D* 1.83 1.42 1.21 
Sp.Cond ASCI_H 2.11 1.56 1.28 
Sulfate CSCI 2.95 2.02 1.51 
Sulfate ASCI_D* 2.95 1.98 1.47 
Sulfate ASCI_H 3.73 2.37 1.66 
TDS CSCI 1.90 1.46 1.22 
TDS ASCI_D* 1.59 1.29 1.14 
TDS ASCI_H 1.92 1.46 1.22 
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Figure 23. Threshold ratios (observed-to-expected values) for each parameter, 
calculated as a 90% probability of achieving an index score above the 10th 
percentile of reference. 

Identification of ionic thresholds in the Santa Ana 
watershed 
Consistent with predictions of natural levels of ionic concentrations, thresholds for most 
parameters were lowest in the high elevation tributaries in the San Gabriel, San Bernardino, 
and San Jacinto mountains as well as the mainstem Santa Ana river, and were highest in smaller 
low-elevation tributaries (Figure 24, Figure 25). When thresholds were compared across 
climatic conditions, thresholds tended to be higher in dry years (Figure 26); however, spatial 
variation in thresholds was far greater than seasonal or climatic variation.  
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Figure 24. Average ionic thresholds based on 80% probability of achieving a CSCI 
Ref10 biointegrity goal. 
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Figure 25. Average integrated ion thresholds based on 80% probability of 
achieving a CSCI Ref10 biointegrity goal. 
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Figure 26. Chloride thresholds based on 80% probability of achieving a CSCI 
Ref10 biointegrity goal in (A) normal, (B) wet, and (C) dry years.  
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Comparison of thresholds to basin plan objectives for 
selected segments 
In many cases, basin plan objectives were close to thresholds identified from biological 
response models (Figure 27). For example, the basin plan objective for TDS in San Jacinto River 
Reach 3 (820 mg/L) was within the range of 80% thresholds identified for this reach (i.e., 724 to 
905 mg/L, depending on the biointegrity index). However, there was evidence that aquatic life 
in some stream segments may not be adequately protected by basin plan objectives. For 
example, the Santa Ana River Reach 3 has a chloride objective of 140 mg/L, while biological 
response models predict a greater than 20% chance of a poor CSCI score when chloride exceeds 
~75 mg/L (depending on the specific stream segment). Thus, the basin plan objective may not 
protect biointegrity in this reach. However, we also found reaches where basin plan objectives 
were not just lower than response model thresholds, they were lower than the predicted 
natural range of ionic parameters (e.g., TDS in San Jacinto River Reach 6). Because the segments 
in this analysis were selected at random, we cannot be sure which situations are more 
prevalent in the Santa Ana watershed. A more comprehensive analysis of all segments in the 
Santa Ana watershed is required to determine if basin plan objectives are protecting 
biointegrity in most streams, and if they are set lower than natural background levels.  
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Figure 27. Comparison of expected concentrations in 9 segments to the 
thresholds protecting a Ref10 biointegrity goal and the Santa Ana Basin Plan 
Objectives for each index – A) CSCI, B) ASCI_D, and C) ASCI_H. Boxes represent 
the median expected concentrations and 1.5 standard deviation tails. Colored 
points represent the risk tolerances of protecting each index with a Ref10 goal – 
gray (80% probability), blue (90% probability), and green (95% probability). Red 
points represent the current Basin Plan Objectives.  
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Assessment of salinization in the Santa Ana watershed 
Overall, most sites in the study met even the most stringent thresholds (i.e., 0.95 probability 
thresholds) for most parameters. Exceedances were most common for TDS, sodium, hardness, 
and chloride than for other parameters (Table 14, Figure 28). In particular, severe exceedances 
(i.e., exceedances of the least stringent threshold) were most common for sodium and chloride. 
Applying the most sensitive thresholds (i.e., thresholds based on ASCI_D scores attaining the 
30th percentile of reference with a probability greater than 0.95), between a quarter to half of 
all streams within the Santa Ana watershed were at risk of salinization impacts to aquatic life. 
Exceedances were more common in urban portions of Orange County and the Inland Empire 
than in the upper watersheds (Figure 29, Figure 30), despite the fact that the numeric values of 
the thresholds were highest in low-elevation areas (Figure 24 to Figure 26). For analytes with 
high data density, clusters of sites exceeding the thresholds could be identified. For example, 
chloride exceedances were most evident along Coyote Creek, the mainstem of the Santa Ana 
River, San Diego Creek, and San Timoteo Canyon (Figure 29). 
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Table 14. The percentage of sites where the average observed ion concentration does not exceed the average 
threshold for each index, biointegrity goal, and probability of achieving the goal. NI: Threshold not identified due 
to poor performance of the biological response model. 

Analyte Index Bio-
integrity 
goal 

n % passing 
0.95 
thresholds 

% passing 
0.90 
thresholds 

% passing 
0.80 
thresholds 

% failing 
all 
thresholds 

Alkalinity CSCI Ref1 139 93 98 100 0 
Alkalinity CSCI Ref10 139 80 92 98 2 
Alkalinity CSCI Ref30 139 74 83 96 4 
Alkalinity ASCI_D Ref1 139 77 86 96 4 
Alkalinity ASCI_D Ref10 139 72 82 93 7 
Alkalinity ASCI_D Ref30 139 68 78 90 10 
Alkalinity ASCI_H Ref1 139 80 91 98 2 
Alkalinity ASCI_H Ref10 139 74 84 95 5 
Alkalinity ASCI_H Ref30 139 72 82 94 6 
Calcium CSCI Ref1 20 80 90 100 0 
Calcium CSCI Ref10 20 75 80 90 10 
Calcium CSCI Ref30 20 65 75 85 15 
Calcium ASCI_D Ref1 20 65 75 80 20 
Calcium ASCI_D Ref10 20 60 65 75 25 
Calcium ASCI_D Ref30 20 60 65 75 25 
Calcium ASCI_H Ref1 20 75 80 90 10 
Calcium ASCI_H Ref10 20 65 75 80 20 
Calcium ASCI_H Ref30 20 60 65 70 30 
Chloride CSCI Ref1 99 79 91 99 1 
Chloride CSCI Ref10 99 65 69 79 21 
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Analyte Index Bio-
integrity 
goal 

n % passing 
0.95 
thresholds 

% passing 
0.90 
thresholds 

% passing 
0.80 
thresholds 

% failing 
all 
thresholds 

Chloride CSCI Ref30 99 61 65 69 31 
Chloride ASCI_D Ref1 99 66 70 83 17 
Chloride ASCI_D Ref10 99 61 65 69 31 
Chloride ASCI_D Ref30 99 58 63 66 34 
Chloride ASCI_H Ref1 99 82 94 100 0 
Chloride ASCI_H Ref10 99 65 69 79 21 
Chloride ASCI_H Ref30 99 59 64 66 34 
Hardness CSCI Ref1 87 82 93 97 3 
Hardness CSCI Ref10 87 68 80 91 9 
Hardness CSCI Ref30 87 57 74 83 17 
Hardness ASCI_D Ref1 87 61 75 85 15 
Hardness ASCI_D Ref10 87 51 63 78 22 
Hardness ASCI_D Ref30 87 48 61 75 25 
Hardness ASCI_H Ref1 87 72 82 92 8 
Hardness ASCI_H Ref10 87 57 72 82 18 
Hardness ASCI_H Ref30 87 51 68 80 20 
Magnesium CSCI Ref1 20 100 100 100 0 
Magnesium CSCI Ref10 NI 100 100 100 0 
Magnesium CSCI Ref30 NI 100 100 100 0 
Magnesium ASCI_D Ref1 NI 100 100 100 0 
Magnesium ASCI_D Ref10 NI 100 100 100 0 
Magnesium ASCI_D Ref30 20 65 65 90 10 
Magnesium ASCI_H Ref1 NI 100 100 100 0 
Magnesium ASCI_H Ref10 20 65 90 95 5 
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Analyte Index Bio-
integrity 
goal 

n % passing 
0.95 
thresholds 

% passing 
0.90 
thresholds 

% passing 
0.80 
thresholds 

% failing 
all 
thresholds 

Magnesium ASCI_H Ref30 20 65 85 90 10 
Sodium CSCI Ref1 20 70 75 80 20 
Sodium CSCI Ref10 20 60 70 70 30 
Sodium CSCI Ref30 20 55 65 70 30 
Sodium ASCI_D Ref1 NI 70 75 85 15 
Sodium ASCI_D Ref10 20 55 55 60 40 
Sodium ASCI_D Ref30 20 55 55 60 40 
Sodium ASCI_H Ref1 NI 75 75 95 5 
Sodium ASCI_H Ref10 NI 70 70 75 25 
Sodium ASCI_H Ref30 NI 70 75 85 15 
Sp.Cond CSCI Ref1 260 85 95 97 3 
Sp.Cond CSCI Ref10 260 74 82 93 7 
Sp.Cond CSCI Ref30 260 70 77 88 12 
Sp.Cond ASCI_D Ref1 260 75 83 94 6 
Sp.Cond ASCI_D Ref10 260 70 77 88 12 
Sp.Cond ASCI_D Ref30 260 67 75 85 15 
Sp.Cond ASCI_H Ref1 260 84 94 97 3 
Sp.Cond ASCI_H Ref10 260 73 81 93 7 
Sp.Cond ASCI_H Ref30 260 70 77 89 11 
Sulfate CSCI Ref1 NI 87 93 97 3 
Sulfate CSCI Ref10 97 75 84 93 7 
Sulfate CSCI Ref30 97 73 78 87 13 
Sulfate ASCI_D Ref1 97 79 87 93 7 
Sulfate ASCI_D Ref10 97 75 82 93 7 
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Analyte Index Bio-
integrity 
goal 

n % passing 
0.95 
thresholds 

% passing 
0.90 
thresholds 

% passing 
0.80 
thresholds 

% failing 
all 
thresholds 

Sulfate ASCI_D Ref30 97 75 82 93 7 
Sulfate ASCI_H Ref1 97 86 93 97 3 
Sulfate ASCI_H Ref10 97 78 88 93 7 
Sulfate ASCI_H Ref30 97 77 87 93 7 
TDS CSCI Ref1 46 74 80 96 4 
TDS CSCI Ref10 46 67 74 78 22 
TDS CSCI Ref30 46 63 67 74 26 
TDS ASCI_D Ref1 46 67 74 83 17 
TDS ASCI_D Ref10 46 63 67 74 26 
TDS ASCI_D Ref30 46 61 67 67 33 
TDS ASCI_H Ref1 46 67 74 80 20 
TDS ASCI_H Ref10 46 67 74 78 22 
TDS ASCI_H Ref30 46 67 67 74 26 
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Figure 28. Percent of sites meeting thresholds for each analyte. Results for the 
ASCI_D response model with the "Ref10" biointegrity goal are shown. 
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Figure 29. Location of sites where the average observed ion concentration 
exceeded the average threshold based on 80%, 90%, and 95% probability of 
achieving an ASCI_D Ref10 biointegrity goal. 

  
Figure 30. Location of sites where the average observed integrated ion 
concentration exceeded the average threshold based on 80%, 90%, and 95% 
probability of achieving an ASCI_D Ref10 biointegrity goal. 

  



 

71 
 

Identifying thresholds 
To assist Waterboard staff with interpreting models and identifying potential thresholds, we 
created a dashboard to explore options for threshold selection and to visualize results: 
https://sccwrp.shinyapps.io/RB8_Threshold. Code and links for data download for the 
dashboard is available at https://github.com/SCCWRP/RB8_ShinyDashboard.  

Users select which parameter they are interested in, and then indicate other factors related to 
threshold selection (Figure 31): 

• Biointegrity index (ASCI_D, ASCI_H, or CSCI) 

• Biointegrity goal (Ref30, Ref10, and Ref01) 

• Probability of attaining the biointegrity goal if the threshold is met (0.8, 0.9, and 0.95) 

• Climatic condition (wet, normal, dry, or overall) 

• Season (April through September, October through March, or all months) 

https://sccwrp.shinyapps.io/RB8_Threshold
https://github.com/SCCWRP/RB8_ShinyDashboard
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Figure 31. Screenshot of the user interface on the salinization threshold dashboard. 
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Based on these selections, the dashboard will identify the appropriate thresholds, based on the 
minimum, mean, and maximum values for all selected months and years meeting the desired 
climatic conditions (n indicates the number of months used to calculate these statistics). In 
addition, minimum, mean, and maximum expected value from the reference models in Part 1. 
Average threshold values are then plotted in a map (Figure 32). Users may download a CSV file 
with the resulting records to join with an NHD+ flowline shapefile and create their own maps in 
GIS software. 
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Figure 32. Example output of the salinization threshold dashboard. 
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Users interested in seeing results for individual flow-lines may click on the map to retrieve 
mean threshold and expected values (Figure 33). 

 

Figure 33. Screenshot of the salinization threshold dashboard showing how to 
find thresholds for individual segments. 

Discussion 
The strength of the biological response models reinforces the rational basis for managing 
stream salinization where aquatic life uses need to be supported, consistent with other studies 
on the risks of salinization (Cañedo-Argüelles et al. 2013, Hintz and Relyea 2019, Melles et al. 
2023). Previous studies in southern California have found that elevated ionic concentrations are 
one of the most widespread stressors contributing to poor biological conditions in streams 
(Mazor 2015).  

The thresholds identified from the models could be used to identify streams where salinization 
is likely posing a risk (Cormier et al. 2018). In addition, these thresholds could be used for causal 
assessments at sites in poor biological condition, or for setting management goals. These 
thresholds complement the numeric objectives in the Santa Ana basin plan (Regional Water 
Quality Control Board-Santa Ana 2019) by enabling analysis of a wider range of parameters 
than are included in the plan, and by providing additional confidence about potential impacts to 
aquatic life.  

Although all indices responded to salinization stress gradients, the diatom index (ASCI_D) was 
more sensitive than the invertebrate index (CSCI) or the index that included soft-bodied algal 
taxa (ASCI_H). There have been few direct comparisons of the salinity tolerances of 
invertebrates to algal assemblages, but most are consistent with our finding of greater 
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sensitivity of algae to water quality conditions than invertebrates (Hering et al. 2006, Mazor et 
al. 2006). Unlike the CSCI, the ASCI_D and ASCI_H both include metrics directly related to the 
salinity tolerance of diatom taxa (Theroux et al. 2020), which might account for the ASCIs’ 
sensitivity to salinization. Many soft algal taxa (especially cyanobacteria and charophytes) are 
known to be highly tolerant of saline conditions (Hart et al. 1990, 1991), although no soft-algal 
metrics in the ASCI_H directly relate to salinity tolerance. A recent study has shown that 
increased salinity can lead to the proliferation of toxin-producing cyanobacteria in nutrient-
enriched environments (Osburn et al. 2023).  

Given that most sites in the Santa Ana watershed meet the thresholds identified in this study, 
managers should focus on protecting present-day water quality conditions from potential 
increases in salinization that could result from climate change, water recycling, or changes in 
water use. For sites where thresholds are exceeded, causal assessments (e.g., Norton et al. 
2014, Gillett et al. 2023) would be necessary to determine if salinization alone is likely affecting 
aquatic life, or if a more broad-based rehabilitation plan is needed. For clusters of sites with 
many exceedances (i.e., Coyote Creek, Santa Ana mainstem, San Diego Creek, and San Timoteo 
Canyon), likely sources should be identified. Once sources are identified, appropriate mitigation 
strategies may be devised. For example, groundwater recharge can be an effective means to 
protect lower elevation streams from saltwater intrusion (Barlow and Reichard 2010). For most 
streams, source control (e.g., reduction of saline discharges) and increased dilution (e.g., 
reduction of diversions) are most effective (Cañedo-Argüelles 2020). Most research on 
reversing freshwater salinization focuses on reducing road salts, which is not a major 
mechanism of salinization in Southern California. In a review of several management strategies, 
Cañedo-Argüelles (2020) notes that restoration of environmental flows can reduce salinity in 
over-exploited rivers, such as the Murray Darling River in Australia (Paul et al. 2018).  

This study supports the continued, broad-based monitoring of multiple ionic parameters. We 
found that no single parameter stood out as having more pervasive or severe exceedances of 
thresholds. For monitoring programs in the Santa Ana watershed lacking resources to assess all 
the parameters in this study, focusing on low-cost integrated parameters, such as specific 
conductivity and TDS, may be appropriate (see Part 3: Comparison of thresholds for integrated 
versus ionic parameters). 
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PART 3: COMPARISON OF THRESHOLDS FOR 
INTEGRATED VERSUS IONIC PARAMETERS 

Introduction 
Water quality monitoring programs may not always have the resources for comprehensive 
assessments of ionic parameters. Some may have access to standard field equipment, including 
water quality probes, yet not have access to or funding for analytical laboratories needed to 
assess concentrations of individual ions in water samples. Beyond the initial costs of purchasing 
probes, field-based measurements can be collected at essentially no cost beyond the expense 
of visiting a site. In contrast, programs would need to cover the costs of measuring each analyte 
in every sample. Although costs vary from lab to lab, the Santa Ana Regional Board’s current 
bioassessment program pays an additional $25 per analyte for chloride, sulfate, magnesium, 
sodium, and calcium in each sample collected; in contrast, specific conductivity data is collected 
at no additional charge at every site where bioassessment is conducted. Even well-funded 
monitoring programs may not have access to an analytical lab or equipment capable of 
producing data. These constraints are particularly important for community-based or citizen-
science monitoring efforts (San Llorente Capdevila et al. 2020). Therefore, smaller monitoring 
programs may want to know if field-based integrated measures of ionic strength (e.g., specific 
conductivity or total dissolved solids) can serve as a stand-in for lab-based measurements of 
individual ionic parameters.  

When used as surrogates, integrated measures might afford a comparable level of protection, 
compared to when individual ionic parameters were measured, or serve as a screening tool to 
identify sites where lab analyses are warranted. We explored the utility of integrated measures 
(i.e., specific conductivity and total dissolved solids) as stand-ins for measurements of individual 
parameters (i.e., calcium, chloride, sodium, and sulfate).  

Methods 

Conceptual approach 
To evaluate whether integrated measures can be used as a surrogate for measuring specific 
ions, we developed random forest models to estimate ionic concentrations (calcium, chloride, 
sodium, and sulfate) from integrated measures (TDS and specific conductivity). Next, we 
developed biological models based on the estimated ionic parameters from the random forest 
predictions. We then compared logistic curves based on estimated parameters to those based 
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on direct observations. These comparisons allowed us to answer whether it is any less 
protective to use an integrated measure instead of an ionic parameter to assess risk from 
elevated concentrations (Figure 34). 

  

Figure 34. A flow chart of steps in the development of models to evaluate whether 
integrated measures can be used as a surrogate for measuring specific ions. 

 

1. Develop random forest models to estimate 
ionic parameter concentrations from 
integrated measures  

2. Develop biological response models based 
on estimated ionic parameters 

3. Compare curves based on estimated 
parameters to those based on direct 
observations 

Curve moves to left:  

Estimated measure 
is more protective 

than direct measure 

Curve moves to the 
right: 

Estimated measure 
is less protective 

than direct measure 

4. Calculate “proxy” thresholds for ionic 
parameters estimated from integrated 
measurements 
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Develop random forest models to predict ionic parameter 
concentrations from integrated measures 
We developed random forest models to predict ionic concentrations from integrated measures. 
The randomForest function from the randomForest package in R was used for all random forest 
models (Liaw and Wiener 2002, R Core Team 2022). Models were developed for four ionic 
parameters (calcium, chloride, sodium, sulfate) and two integrated measures (specific 
conductivity and TDS). We did not develop models to estimate magnesium from integrated 
measures due to poor predictive performance in biological response models (see Part 2: 
Evaluate biological response to elevated ionic concentrations). All random forest models were 
developed with observed concentrations that also had biological data (CSCI and ASCI scores). 

Develop biological response models based on estimated 
ionic parameters 
We developed logistic regressions to calculate the probability of meeting biointegrity 
thresholds at increasing levels of salinization based on the ionic parameter values estimated 
from random forest models. Logistic regression models were created with the probability of 
good biological condition as the response variable and the ionic concentration estimated from 
the integrated measure divided by the reference prediction (the expected concentrations 
derived from Part 1) as the predictor variable (O/E). Similar to the models developed in Part 2, 
the glm function in R, with a binomial error distribution and a logit link function, was used for 
all logistic regressions (R Core Team 2022). A separate set of models was developed for each 
ionic parameter (calcium, chloride, sodium, sulfate), bioassessment index (CSCI, ASIC_D, 
ASCI_H), and biointegrity goal (1st, 10th, and 30th percentile; 36 models), depending on whether 
the ionic parameters were estimated from TDS or specific conductivity (72 models total). These 
models were trained with the same data sets used in Part 2, representing streams from all over 
California (integrated parameters in Table 9). Model outputs are available from 
https://sccwrp.shinyapps.io/RB8_Threshold/.  

Compare curves based on estimated parameters to those 
based on direct observations 
Logistic regressions developed for ionic parameters estimated from integrated measures were 
then compared to models developed from direct observations. To do this, biological models 
developed in Part 2 were compared to the biological models developed based on estimated 
ionic parameters from integrated measures. Comparisons were made between the three types 
of models for each ionic parameter –observed concentrations, concentrations estimated from 
specific conductivity, and concentrations estimated from TDS. All three model types were 
compared for each ionic parameter (calcium, chloride, sodium, sulfate), bioassessment index 

https://sccwrp.shinyapps.io/RB8_Threshold/
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(CSCI, ASIC_D, ASCI_H), and biointegrity goal (1st, 10th, and 30th percentile; 36 models). The 
position of the curves was compared, where if curves moved to the left, then the integrated 
measure is more protective than direct measure when used as a proxy. If curves moved to the 
right, then the estimated measure is less protective than direct measure. 

Calculate “proxy” thresholds for ionic parameters 
estimated from integrated measurements 
Significant logistic regression models (p < 0.05) for each combination of model type, estimated 
ionic parameter, bioassessment index, and biointegrity goal were then used to identify 
concentrations that were predictive of a ≥0.8, ≥0.9, or ≥0.95 probabilities of good biological 
condition occurring. Following methods outlined in Part 2, we established a range of values to 
evaluate for each observed/expected ratio for each ion (from 1 to a maximum of 75 mg/L 
chloride, 25 mg/L calcium, 30 mg/L sodium, and 40 mg/L sulfate), and ran the models for 1000 
values along this range, as well as 95% confidence limits (as 1.96 times the standard error); 
predictions and confidence limits were expressed in terms of the linear predictors before 
transforming into probabilities through an inverse-link function. Each threshold was expressed 
as a ratio (O/E threshold). 

Results 

Develop random forest models to estimate ionic 
parameter concentrations from integrated measures 
Random forest models were successful in estimating ionic concentrations from integrated 
measures (Table 15, Figure 35). Of the 8 models, the weakest relationships were between 
chloride and specific conductivity (r2 = 0.496) and chloride and TDS (r2 = 0.445). For all analytes, 
random forest models tended to underestimate ionic concentrations (Figure 35). 
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Table 15. Performance of random forest models to predict ionic concentrations 
from integrated measures.  

Ion Integrated 
Calibration 

sites in 
California 

Calibration sites 
in the Santa Ana 

watershed 
Pseudo R2 

Calcium Sp.Cond 443 18 0.776 
Calcium TDS 129 3 0.631 
Chloride Sp.Cond 1679 112 0.496 
Chloride TDS 274 49 0.445 
Sodium Sp.Cond 240 18 0.807 
Sodium TDS 33 3 0.712 
Sulfate Sp.Cond 1542 106 0.670 
Sulfate TDS 310 49 0.824 
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Figure 35. Relationships between observed ion concentrations (calcium, chloride, 
sodium, and sulfate) and estimated ion concentrations from integrated measures 
(specific conductivity and TDS). Panels in the left column show relationships 
between ion concentrations and predicted concentrations from specific 
conductivity. Panels on the right show relationships with TDS. Gray lines are 
linear regression lines between observed and estimated concentrations, and 
black dashed lines are 1:1 lines.   
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Develop biological response models based on estimated 
ionic parameters 
Logistic regressions developed for ionic parameters estimated from integrated measures were 
usually successful in predicting the likelihood of attaining a biointegrity goal (Table 16; Figure 
36). Of the 24 models estimating ionic concentration, 18 of the models had statistically 
significant coefficients (p < 0.05). Models estimating sodium concentrations from TDS were 
unable to predict a Ref10 goal for CSCI, ASCI_D, or ASCI_H. 

Table 16. Performance of biological response models to predict probability of 
meeting biointegrity goals at increasing levels of ionic stress for each model type 
(observed ion concentrations, ion concentrations estimated from specific 
conductivity, and ion concentrations estimated from TDS). Only models for the 
"Ref10" biointegrity goal are shown. P-values for the coefficient are represented 
as * <0.05, ** <0.01, *** <0.001. Model results for model type “Observed” are the 
same models shown in Table 10. 

   Coefficient Intercept  

Analyte Model 
type Index estimate Std error estimate Std error P 

Calcium Observed CSCI -0.290 0.069 0.651 0.162 *** 
Calcium Sp. Cond CSCI -0.299 0.070 0.790 0.176 *** 
Calcium TDS CSCI -0.660 0.225 1.247 0.524 ** 
Calcium Observed ASCI_D -0.726 0.147 0.371 0.252 *** 
Calcium Sp. Cond ASCI_D -0.631 0.139 0.335 0.279 *** 
Calcium TDS ASCI_D -0.558 0.318 -0.461 0.686 0.079 
Calcium Observed ASCI_H -0.389 0.106 0.234 0.273 *** 
Calcium Sp. Cond ASCI_H -0.829 0.154 1.010 0.329 *** 
Calcium TDS ASCI_H -0.595 0.238 0.533 0.540 * 
Chloride Observed CSCI -0.108 0.012 0.974 0.069 *** 
Chloride Sp. Cond CSCI -0.092 0.010 1.022 0.074 *** 
Chloride TDS CSCI -0.178 0.031 1.227 0.245 *** 
Chloride Observed ASCI_D -0.164 0.017 0.664 0.073 *** 
Chloride Sp. Cond ASCI_D -0.097 0.012 0.556 0.075 *** 
Chloride TDS ASCI_D -0.150 0.035 0.090 0.252 *** 
Chloride Observed ASCI_H -0.089 0.012 0.674 0.071 *** 
Chloride Sp. Cond ASCI_H -0.029 0.007 0.487 0.068 *** 
Chloride TDS ASCI_H -0.114 0.030 0.328 0.241 *** 
Sodium Observed CSCI -0.398 0.107 0.836 0.206 *** 
Sodium Sp. Cond CSCI -0.304 0.090 0.872 0.209 ** 
Sodium TDS CSCI -1.083 0.588 2.947 1.806 0.066 
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   Coefficient Intercept  

Analyte Model 
type Index estimate Std error estimate Std error P 

Sodium Observed ASCI_D -1.005 0.368 0.806 0.406 * 
Sodium Sp. Cond ASCI_D -1.109 0.421 1.252 0.487 * 
Sodium TDS ASCI_D 0.000 5150 -25 53643 1.000 
Sodium Observed ASCI_H -0.144 0.116 0.267 0.386 0.213 
Sodium Sp. Cond ASCI_H -0.180 0.116 0.225 0.397 0.123 
Sodium TDS ASCI_H 0.176 0.110 -3.744 1.438 0.109 
Sulfate Observed CSCI -0.291 0.029 1.046 0.077 *** 
Sulfate Sp. Cond CSCI -0.065 0.015 0.775 0.070 *** 
Sulfate TDS CSCI -0.407 0.061 1.268 0.210 *** 
Sulfate Observed ASCI_D -0.224 0.031 0.421 0.076 *** 
Sulfate Sp. Cond ASCI_D -0.031 0.013 0.136 0.069 * 
Sulfate TDS ASCI_D -0.431 0.084 0.369 0.232 *** 
Sulfate Observed ASCI_H -0.173 0.027 0.543 0.077 *** 
Sulfate Sp. Cond ASCI_H -0.005 0.007 0.250 0.065 0.487 
Sulfate TDS ASCI_H -0.311 0.061 0.404 0.213 *** 
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Figure 36. Relative probabilities of meeting biointegrity goals at increasing levels 
of ionic stress for each model type (observed ion concentrations, ion 
concentrations estimated from specific conductivity, and ion concentrations 
estimated from TDS). Only models for the "Ref10" biointegrity goal are shown. 
Dotted lines represent 80%, 90%, and 95% relative probability. 
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Compare curves based on estimated parameters to those 
based on direct observations 
In general, TDS was a better surrogate for individual ions than specific conductivity. Most of the 
curves for TDS in Figure 36 are close to or to the left of (i.e., more sensitive) than the curves for 
direct measurements. As an exception, the relationships between sodium and TDS were 
relatively poor (likely due to insufficient data and poor performance of the random forest 
model, Table 15, Table 16), leading to non-significant relationships with the ASCIs. In contrast, 
parameters estimated from specific conductivity were often substantially less sensitive than the 
direct measures, with sodium again being a notable exception. Thus, TDS is a suitable surrogate 
for three ionic parameters (i.e., calcium, chloride, and sulfate), while specific conductivity is a 
suitable surrogate for two parameters (i.e., calcium and sodium). 

Calculate “proxy” thresholds for ionic parameters 
estimated from integrated measurements 
Thresholds identified from the biological response models based on estimated ionic 
concentrations are shown in Table 17. These thresholds provide ways to interpret 
measurements of integrated parameters in terms of whether specific ions are likely exceeding 
levels that pose risks to aquatic life.
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Table 17. Thresholds corresponding to 80%, 90%, and 95% relative probabilities of meeting biointegrity goals for 
each model type (observed ion concentrations [Ob], ion concentrations estimated from specific conductivity 
[Sp.C], and ion concentrations estimated from TDS [TDS]). Only models for the "Ref10" biointegrity goal are 
shown. Green squares and * indicate estimated thresholds that are more protective than the direct measure. NI: 
Threshold not identified due to poor performance of the biological response model. 

  80% probability 90% probability 95% probability 
Analyte Index Ob Sp.C TDS Ob Sp.C TDS Ob Sp.C TDS 
Calcium CSCI 2.634 2.682 1.793* 1.817 1.841 1.408* 1.408 1.432 1.192* 
Calcium ASCI_D 1.480 1.553 1.505 1.216 1.264 1.240 1.096 1.120 1.120 
Calcium ASCI_H 1.961 1.505* 1.649* 1.480 1.240* 1.312* 1.216 1.120* 1.144* 
Chloride CSCI 6.630 7.815 4.778* 3.889 4.556 3.000* 2.481 2.852 2.037* 
Chloride ASCI_D 4.037 6.111 3.593* 2.556 3.593 2.259* 1.741 2.259 1.593* 
Chloride ASCI_H 6.926 17.963 4.852* 3.963 9.593 2.926* 2.481 5.296 1.963* 
Sodium CSCI 2.219 2.713 1.958* 1.610 1.871 1.552* 1.290 1.435 1.290 
Sodium ASCI_D 1.348 1.377 NI 1.174 1.174 NI 1.087 1.087 NI 
Sodium ASCI_H 3.961 3.293* NI 2.451 2.132* NI 1.726 1.552* NI 
Sulfate CSCI 2.952 9.667 2.483* 2.015 5.450 1.781* 1.508 3.264 1.390* 
Sulfate ASCI_D 2.952 14.820 1.898* 1.976 7.871 1.429* 1.468 4.435 1.195* 
Sulfate ASCI_H 3.733 NI 2.327* 2.366 NI 1.664* 1.664 23.643 1.312* 
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Discussion 
This study demonstrates that low-cost field measurements of ionic strength can stand in for 
direct measures of ionic parameters. Exceeding the thresholds shown in Table 17 can serve as a 
screening and prioritization tool, to determine if follow-up measurements are needed. Due to 
the ways they are derived, the “proxy” thresholds shown in Table 17 should be interpreted 
differently from integrated parameter thresholds in Table 13. Proxy thresholds can identify 
streams at risk from certain ionic parameters, whereas the thresholds in Table 13 identify 
streams where overall ionic strength creates a risk.  

In general, TDS was a more sensitive surrogate for individual ions than specific conductivity. 
This difference could be due to the fact that specific conductivity is influenced not just by ionic 
concentrations, but also by temperature. Although TDS was not demonstrated to be an 
effective surrogate for sodium measurements, we believe this is likely due to data limitations; 
with additional data collection, we are likely to identify thresholds for sodium estimated from 
TDS measurements as well. 

CONCLUSIONS AND RECOMMENDATIONS 
This study demonstrates that salinization has the potential to threaten aquatic life in the Santa 
Ana basin. We demonstrated that elevated ionic concentrations are pervasive, and at levels 
likely to degrade biological condition. The thresholds identified in this study can help managers 
identify streams where salinization poses a risk and set goals for improving degraded streams. 
We have presented options to help managers set thresholds customized for each stream 
segment in the Santa Ana watershed and for different seasonal or climatic conditions where 
thresholds may be needed. 

We identified thresholds reflecting a range of probabilities of meeting biointegrity goals. 
Managers can identify thresholds consistent with their needs and tolerance for risk. Thresholds 
set at high probabilities (e.g., 99%) result in high stringency thresholds that may be effective for 
screening sites; however, high stringency thresholds may detect problems where none has 
occurred. Conversely, low stringency thresholds set at lower probabilities (e.g., 80%) run the 
opposite risk, where degraded streams are undetected. Whether high- or low-stringency 
thresholds are used, it will likely be necessary for managers to conduct follow-up assessments 
to confirm that biological degradation has occurred. 

Overall, season and climate affected thresholds much less than location, suggesting that long-
term, static thresholds may be appropriate if they account for site-specific factors that 
influence background levels of ionic concentrations. It is likely that seasonal effects are more 
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important in snow-influenced landscapes, where spring snowmelt contributes to large influxes 
of very low salinity water (Bolotin et al. 2023). Within the Santa Ana watershed, very few 
stream miles likely experience substantial snowmelt influence. 

Climate change will have complex effects on stream hydrology and biogeochemistry, including 
effects on stream salinity. Climatic factors, such as antecedent temperature and precipitation, 
were among the most important variables in predicting natural levels of ionic parameters. 
Under climate change in California, air temperatures are likely to increase, and precipitation will 
become more variable, leading to greater fluctuations in stream flow (Olson 2019). The likely 
outcome is that streams will experience higher levels of salinization (Bolotin et al. 2023). The 
models in this study were calibrated with 20 years of data, covering a wide range of climatic 
variability and providing them with a level of robustness to future changes in hydrology and 
natural stream salinity. However, periodic recalibration with newer data (particularly with long 
term data collected at a common set of sites) would ensure the appropriateness of their use 
under changing climatic conditions. 
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SUPPLEMENTAL MATERIAL 
Table S1. Performance of biological response models to predict probability of meeting biointegrity goals at 
increasing levels of ionic stress. P-values are represented as * <0.05, ** <0.01, *** <0.001. NI: Threshold not 
identified due to poor performance of the biological response model. 

     Coefficient Intercept  
Bio-

integrity 
Goal 

Analyte Index Train n Test 
n estimate Std 

error estimate Std 
error P 

Ref1 Alkalinity CSCI 1706 427 -0.384 0.081 1.869 0.117 *** 
Ref1 Alkalinity ASCI_D 1335 334 -0.831 0.106 1.828 0.139 *** 
Ref1 Alkalinity ASCI_H 1327 332 -0.661 0.098 1.788 0.135 *** 
Ref1 Calcium CSCI 364 91 -0.260 0.062 1.559 0.182 *** 
Ref1 Calcium ASCI_D 228 58 -0.598 0.116 0.889 0.240 *** 
Ref1 Calcium ASCI_H 193 49 -0.314 0.087 0.817 0.251 *** 
Ref1 Chloride CSCI 1414 354 -0.044 0.007 1.559 0.076 *** 
Ref1 Chloride ASCI_D 1260 315 -0.095 0.011 1.344 0.079 *** 
Ref1 Chloride ASCI_H 1219 305 -0.028 0.006 1.247 0.074 *** 
Ref1 Hardness CSCI 1176 294 -0.253 0.033 1.776 0.102 *** 
Ref1 Hardness ASCI_D 1136 285 -0.601 0.052 1.841 0.112 *** 
Ref1 Hardness ASCI_H 1097 275 -0.435 0.043 1.751 0.108 *** 
Ref1 Magnesium CSCI 288 73 -0.001 0.001 1.018 0.134 NI 
Ref1 Magnesium ASCI_D 152 39 0.000 0.001 -0.075 0.164 NI 
Ref1 Magnesium ASCI_H 117 30 0.000 0.001 -0.152 0.188 NI 
Ref1 Sodium CSCI 215 54 -0.199 0.063 1.333 0.200 ** 
Ref1 Sodium ASCI_D 83 21 -0.125 0.076 0.424 0.281 NI 
Ref1 Sodium ASCI_H 48 12 -0.089 0.072 0.614 0.367 NI 



 

98 
 

     Coefficient Intercept  
Bio-

integrity 
Goal 

Analyte Index Train n Test 
n estimate Std 

error estimate Std 
error P 

Ref1 Sp.Cond CSCI 2152 539 -0.367 0.040 1.864 0.083 *** 
Ref1 Sp.Cond ASCI_D 1480 371 -0.598 0.056 1.704 0.100 *** 
Ref1 Sp.Cond ASCI_H 1437 360 -0.320 0.043 1.569 0.092 *** 
Ref1 Sulfate CSCI 1303 326 -0.223 0.024 1.770 0.089 *** 
Ref1 Sulfate ASCI_D 1115 279 -0.249 0.029 1.223 0.084 *** 
Ref1 Sulfate ASCI_H 1076 269 -0.179 0.026 1.311 0.087 *** 
Ref1 TDS CSCI 291 73 -0.506 0.077 2.408 0.263 *** 
Ref1 TDS ASCI_D 263 66 -0.364 0.077 0.804 0.214 *** 
Ref1 TDS ASCI_H 263 66 -0.453 0.084 1.113 0.229 *** 

Ref10 Alkalinity CSCI 1706 427 -0.445 0.081 1.018 0.105 *** 
Ref10 Alkalinity ASCI_D 1335 334 -0.676 0.106 0.879 0.129 *** 
Ref10 Alkalinity ASCI_H 1327 332 -0.643 0.103 1.047 0.130 *** 
Ref10 Calcium CSCI 364 91 -0.290 0.069 0.651 0.162 *** 
Ref10 Calcium ASCI_D 228 58 -0.726 0.147 0.371 0.252 *** 
Ref10 Calcium ASCI_H 193 49 -0.389 0.106 0.234 0.273 *** 
Ref10 Chloride CSCI 1414 354 -0.108 0.012 0.974 0.069 *** 
Ref10 Chloride ASCI_D 1260 315 -0.164 0.017 0.664 0.073 *** 
Ref10 Chloride ASCI_H 1219 305 -0.089 0.012 0.674 0.071 *** 
Ref10 Hardness CSCI 1176 294 -0.373 0.041 1.150 0.094 *** 
Ref10 Hardness ASCI_D 1136 285 -0.666 0.064 1.125 0.106 *** 
Ref10 Hardness ASCI_H 1097 275 -0.585 0.056 1.234 0.106 *** 
Ref10 Magnesium CSCI 288 73 0.000 0.001 0.183 0.119 NI 
Ref10 Magnesium ASCI_D 152 39 0.000 0.001 -0.690 0.173 NI 
Ref10 Magnesium ASCI_H 117 30 -0.222 0.065 0.227 0.284 ** 
Ref10 Sodium CSCI 215 54 -0.398 0.107 0.836 0.206 *** 
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     Coefficient Intercept  
Bio-

integrity 
Goal 

Analyte Index Train n Test 
n estimate Std 

error estimate Std 
error P 

Ref10 Sodium ASCI_D 83 21 -1.005 0.368 0.806 0.406 ** 
Ref10 Sodium ASCI_H 48 12 -0.144 0.116 0.267 0.386 NI 
Ref10 Sp.Cond CSCI 2152 539 -0.461 0.045 1.041 0.075 *** 
Ref10 Sp.Cond ASCI_D 1480 371 -0.554 0.060 0.868 0.093 *** 
Ref10 Sp.Cond ASCI_H 1437 360 -0.456 0.053 0.953 0.091 *** 
Ref10 Sulfate CSCI 1303 326 -0.291 0.029 1.046 0.077 *** 
Ref10 Sulfate ASCI_D 1115 279 -0.224 0.031 0.421 0.076 *** 
Ref10 Sulfate ASCI_H 1076 269 -0.173 0.027 0.543 0.077 *** 
Ref10 TDS CSCI 291 73 -0.637 0.099 1.380 0.239 *** 
Ref10 TDS ASCI_D 263 66 -0.660 0.127 0.609 0.256 *** 
Ref10 TDS ASCI_H 263 66 -0.457 0.093 0.585 0.227 *** 
Ref30 Alkalinity CSCI 1706 427 -0.500 0.086 0.340 0.106 *** 
Ref30 Alkalinity ASCI_D 1335 334 -0.612 0.116 0.116 0.135 *** 
Ref30 Alkalinity ASCI_H 1327 332 -0.532 0.108 0.224 0.128 *** 
Ref30 Calcium CSCI 364 91 -0.386 0.087 0.228 0.170 *** 
Ref30 Calcium ASCI_D 228 58 -0.577 0.159 -0.453 0.268 *** 
Ref30 Calcium ASCI_H 193 49 -1.215 0.228 0.939 0.358 *** 
Ref30 Chloride CSCI 1414 354 -0.146 0.017 0.348 0.068 *** 
Ref30 Chloride ASCI_D 1260 315 -0.183 0.023 -0.007 0.074 *** 
Ref30 Chloride ASCI_H 1219 305 -0.183 0.021 0.248 0.074 *** 
Ref30 Hardness CSCI 1176 294 -0.375 0.046 0.469 0.092 *** 
Ref30 Hardness ASCI_D 1136 285 -0.527 0.067 0.163 0.103 *** 
Ref30 Hardness ASCI_H 1097 275 -0.492 0.058 0.464 0.100 *** 
Ref30 Magnesium CSCI 288 73 0.000 0.001 -0.545 0.123 NI 
Ref30 Magnesium ASCI_D 152 39 -0.337 0.106 -0.369 0.268 ** 
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     Coefficient Intercept  
Bio-

integrity 
Goal 

Analyte Index Train n Test 
n estimate Std 

error estimate Std 
error P 

Ref30 Magnesium ASCI_H 117 30 -0.215 0.075 -0.331 0.301 ** 
Ref30 Sodium CSCI 215 54 -0.442 0.132 0.359 0.213 ** 
Ref30 Sodium ASCI_D 83 21 -0.908 0.385 0.107 0.413 * 
Ref30 Sodium ASCI_H 48 12 -0.086 0.096 -0.635 0.402 NI 
Ref30 Sp.Cond CSCI 2152 539 -0.466 0.051 0.345 0.076 *** 
Ref30 Sp.Cond ASCI_D 1480 371 -0.504 0.068 0.090 0.097 *** 
Ref30 Sp.Cond ASCI_H 1437 360 -0.438 0.059 0.318 0.092 *** 
Ref30 Sulfate CSCI 1303 326 -0.319 0.037 0.417 0.073 *** 
Ref30 Sulfate ASCI_D 1115 279 -0.167 0.033 -0.369 0.077 *** 
Ref30 Sulfate ASCI_H 1076 269 -0.143 0.029 -0.126 0.076 *** 
Ref30 TDS CSCI 291 73 -0.757 0.132 0.806 0.257 *** 
Ref30 TDS ASCI_D 263 66 -0.759 0.176 -0.005 0.291 *** 
Ref30 TDS ASCI_H 263 66 -0.487 0.107 0.226 0.237 *** 
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Table S 2. Predicted observed/expected ionic thresholds corresponding to 80%, 
90%, and 95% relative probabilities of meeting biointegrity goals. Models for the 
"Ref10" biointegrity goal are shown in Table 13. NI: Threshold not identified due 
to poor performance of the biological response model.  

   Probability 
Biointegrity  

goal Analyte Index 0.8 0.9 0.95 

Ref1 Alkalinity CSCI 3.228 2.219 1.645 
Ref1 Alkalinity ASCI_D 1.785 1.406 1.210 
Ref1 Alkalinity ASCI_H 2.065 1.561 1.294 
Ref1 Calcium CSCI 3.955 2.586 1.841 
Ref1 Calcium ASCI_D 1.769 1.384 1.192 
Ref1 Calcium ASCI_H 2.610 1.817 1.408 
Ref1 Chloride CSCI 20.926 11.963 6.852 
Ref1 Chloride ASCI_D 8.852 5.222 3.222 
Ref1 Chloride ASCI_H 27.444 15.148 8.407 
Ref1 Hardness CSCI 4.442 2.902 2.008 
Ref1 Hardness ASCI_D 2.236 1.666 1.342 
Ref1 Hardness ASCI_H 2.788 1.970 1.494 
Ref1 Magnesium CSCI NI NI NI 
Ref1 Magnesium ASCI_D NI NI NI 
Ref1 Magnesium ASCI_H NI NI NI 
Ref1 Sodium CSCI 4.542 2.858 1.958 
Ref1 Sodium ASCI_D 4.687 2.858 1.929 
Ref1 Sodium ASCI_H 6.748 3.932 2.480 
Ref1 Sp.Cond CSCI 3.340 2.289 1.687 
Ref1 Sp.Cond ASCI_D 2.163 1.617 1.308 
Ref1 Sp.Cond ASCI_H 3.340 2.261 1.659 
Ref1 Sulfate CSCI 4.943 3.186 2.171 
Ref1 Sulfate ASCI_D 3.577 2.327 1.703 
Ref1 Sulfate ASCI_H 4.943 3.069 2.093 
Ref1 TDS CSCI 3.116 2.219 1.659 
Ref1 TDS ASCI_D 2.345 1.673 1.336 
Ref1 TDS ASCI_H 2.205 1.617 1.308 

Ref30 Alkalinity CSCI 2.177 1.603 1.294 
Ref30 Alkalinity ASCI_D 1.645 1.322 1.154 
Ref30 Alkalinity ASCI_H 1.743 1.378 1.182 
Ref30 Calcium CSCI 2.634 1.817 1.408 
Ref30 Calcium ASCI_D 1.480 1.216 1.096 
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   Probability 
Biointegrity  

goal Analyte Index 0.8 0.9 0.95 

Ref30 Calcium ASCI_H 1.961 1.480 1.216 
Ref30 Chloride CSCI 6.630 3.889 2.481 
Ref30 Chloride ASCI_D 4.037 2.556 1.741 
Ref30 Chloride ASCI_H 6.926 3.963 2.481 
Ref30 Hardness CSCI 2.560 1.799 1.399 
Ref30 Hardness ASCI_D 1.742 1.361 1.190 
Ref30 Hardness ASCI_H 1.932 1.475 1.228 
Ref30 Magnesium CSCI NI NI NI 
Ref30 Magnesium ASCI_D NI NI NI 
Ref30 Magnesium ASCI_H 2.796 1.898 1.429 
Ref30 Sodium CSCI 2.219 1.610 1.290 
Ref30 Sodium ASCI_D 1.348 1.174 1.087 
Ref30 Sodium ASCI_H 3.961 2.451 1.726 
Ref30 Sp.Cond CSCI 2.135 1.575 1.294 
Ref30 Sp.Cond ASCI_D 1.827 1.420 1.210 
Ref30 Sp.Cond ASCI_H 2.107 1.561 1.280 
Ref30 Sulfate CSCI 2.952 2.015 1.508 
Ref30 Sulfate ASCI_D 2.952 1.976 1.468 
Ref30 Sulfate ASCI_H 3.733 2.366 1.664 
Ref30 TDS CSCI 1.897 1.462 1.224 
Ref30 TDS ASCI_D 1.589 1.294 1.140 
Ref30 TDS ASCI_H 1.925 1.462 1.224 
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