

LECL TMDL Task Force Update to TMDL Revision

Presentation by Steve Wolosoff, GEI and Paula Kulis, CDM Smith

April 25, 2023

Agenda

- Linkage Analysis within Reference Watershed Approach
- Lake Water Quality Models
- Numeric Target Derivation

Reference Watershed Approach

- Begin with allowable load
- Calibrated lake water models with current load and in-lake response
- Simulate lake water quality for a reference watershed condition scenario
- Convert time series results for historical hydrology into CDFs or reference curves

Water Quality Models

GLM for Lake Elsinore

- Description
- Key parameters
- Calibration results
- Reference scenario results
 - Nutrients, DO
 - Sediment flux
- Comparison
 - Calibration
 - Interim
 - Final

GLM for Lake Elsinore: Description

- 1D (modeling changes with depth)
- Water Balance
- Temperature
- Water Quality Model: AED2
 - Nutrients
 - Chlorophyll
 - DO
 - Sediment exchange

GLM for Lake Elsinore: Approach

500 Model: horizontally averaged EE1 --· TMDL Target 2015 EE2 --· TMDL Target 2020 Chlorophyll-a (µg/L) • Observations: variability in-lake LEE3 • Spatial within the lake • Temporal within a season 100 191Jan12003 51AU912003 1AU912002 01Apri2004 JINOVI2004 611112006 31134112015 Alfebraol AIApri2008 30132112009 7515ep/2009 1411112010 29134112011 1May 2012 OIAPT2016 Decipans **WQ Observations** Date vary site to site and Lake Elsinore Total Phosphorus within a season by ~ Total Phosphorus (mg/L) 30-100% --- TMDL Target

12111112002

Palbect2002

0610ct/2003

0410ct12004

21156012005

DBINOVI2006

161³⁸⁷¹²⁰⁰⁸

241APri2009

1411112010

AIFeb/2012

271,3412015 siDeci2015 -OIAPHZ016 25111112016

LEE1

LEE2

LEE3

GLM for Lake Elsinore: Approach

- Model: inflow concentrations are constant
 - Smooths out sharp swings in time
- Observations: temporal variability

TP and TN EMCs vary over time

GLM for Lake Elsinore: Calibration Approach

- 1D (modeling changes with depth)
 - Model results are **<u>averages</u>** over the entire model at a given depth
- Assumptions → Model input concentrations are constant
 - Impossible to capture sharp swings
- Long-term reference simulation (100+ years) and calibration period (20 years)

Goals:

- capture long-term trends
- model-data comparisons matching on a similar level to data variability

GLM for Lake Elsinore: Model Simulations

Parameter	Existing Conditions	2018 Reference Conditions (interim)	Reference Conditions
Description	Present-day lake characteristics	50 th percentile loadings	25 th percentile loadings with levee
Hypsography	With levee	Without levee	With levee
Inflow Total Phosphorous (mg/L) in Runoff	0.39	0.32	0.16
Inflow Total Nitrogen (mg/L) in Runoff	1.64	0.92	0.68
Internal Total Phosphorous Flux (mg/m ² /day)	9.0	5.4	3.7
Internal Total Nitrogen Flux (mg/m ² /day)	75.0	37.0	31.1
EVMWD discharge	Metered Inflows	None	None
Runoff Flow		USGS gauge + local runof	f

Model-data comparisons

Reference Sediment Flux Estimates

4

	Lake E	lsinore	Canyon Lake						
Parameter	Phosphorus	Nitrogen	Phosphorus	Nitrogen					
Existing Conditions	9.0	75.0	15.5	44.0					
Median Values	5.4	37.0	7.8	22.0					
Reference Scenario (25th percentile)	3.7	31.1	4.3	13.1					

GLM for Lake Elsinore: Existing Conditions Physical Model

GLM for Lake Elsinore: Existing Conditions Nutrients

GLM for Lake Elsinore: Existing Conditions Surface Chlorophyll

GLM for Lake Elsinore: Existing Conditions DO and Temperature

GLM for Lake Elsinore: Existing Conditions Summary Stats

Parameter	Observed	Predicted	% Relative Error	Ν	RMSE	Standard Deviation of Observations
Lake Elevation (ft						
NAVD88)	1241.5	1241.3	2.6%	2,555	0.53	4.43
Temperature (deg C)	24.4	25.0	6.1%	63	2.30	2.42
TDS (mg/L)	1509	1498	12.3%	145	201	401
DO (mg/L)	8.1	7.1	22.8%	56	2.66	1.16
TN (mg/L)	4.2	4.9	32.7%	137	1.21	1.75
TP (mg/L)	0.30	0.27	29.5%	148	0.11	0.16
ChlA (ug/L)	155	156	50.7%	145	88	98

*Note: For TP, TN and ChlA statistics are calculated using a seasonal average approach for observations

GLM for Lake Elsinore: Reference Scenario

Hydrology

- **1916-2020**
- 105 years
- Includes dry period

GLM for Lake Elsinore: Reference Scenario Simulated Chlorophyll and DO

GLM for Lake Elsinore: Reference Scenario Simulated TP and TN

GLM for Lake Elsinore: Reference Modeled Sediment Flux

- Fluxes based on observations
- Adjusted for:
 - Temperature

DissolvedOxygen

AEM3D for Canyon Lake

- 3D
- Water Balance
- Temperature
- Internal Water Quality Model
 - Nutrients
 - Chlorophyll
 - DO
 - Sediment exchange

AEM3D for Canyon Lake: Approach

- Data variability lower than Lake Elsinore
- Calibration time period shorter than Lake Elsinore
- Spatially highly resolved

Calibration goals:

- Capture long term trends
- Seasonal trends

Reference Sediment Flux Estimates

4

	Lake E	lsinore	Canyon Lake						
Parameter	Phosphorus	Nitrogen	Phosphorus	Nitrogen					
Existing Conditions	9.0	75.0	15.5	44.0					
Median Values	5.4	37.0	7.8	22.0					
Reference Scenario (25th percentile)	3.7	31.1	4.3	13.1					

Mean Val Lake (Ob	ues for Obse served/Pred	rved and Pre icted)	edicted Wate	r Quality Pa	rameters in	Canyon
Site	Depth (m)	Temperature (°C)	DO (mg/L)	Chlorophyll- a (µg/L)	Total N (mg/L)	Total P (mg/L)
Main Lake	Epilimnion (2- m)	21.5 / 21.3	8.1 / 7.3	31.2 / 38.8	1.57 / 1.24	0.59 / 0.66
(M1)	Hypolimnion (12-m)	13.3 / 12.6	1.0 / 1.0	-	-	-
East Bay (E2)	Epilimnion (1-m)	-	-	50.8 / 53.7	1.80 / 1.35	0.50 / 0.64

Average of Percent Relative Errors Between Discrete Pairs (Sampled Days) of Predicted and Observed Water Quality in Canyon Lake

Site	Depth (m)	Temperature (% error)	DO (% error)	Chlorophyll- a (% error)	Total N (% error)	Total P (% error)
Main Lake	Epilimnion (2- m)	4.0 (N = 80)	22.7 (N = 73)	66.8 (N = 47)	36.8 (N = 57)	35.4 (N = 60)
(M1)	Hypolimnion (12-m)	8.7 (N = 77)	58.6 (M = 68)	-	-	-
East Bay (E2)	Epilimnion (1 m)	-	-	59.5 (N = 65)	37.8 (N = 72)	61.1 (N = 69)

AEM3D for Canyon Lake: Reference Simulation

AEM3D for Canyon Lake: Reference Simulation

AEM3D for Canyon Lake: Reference Period Simulated Sediment Fluxes

- Fluxes based on observations
- Adjusted for:
 - Temperature
 - Dissolved Oxygen

Numeric Targets

Reference Watershed

- Model simulation for reference watershed (allocated loading) achieves expected in lake response for a natural condition
- Different from stressor-response approach that begins with inlake target and works upstream to allocations

Numeric Targets

• Algae narrative WQO

- "Waste discharges shall not contribute to excessive algal growth in inland surface receiving waters"
- Dissolved Oxygen numeric WQO
 - "The dissolved oxygen content of surface waters shall not be depressed below 5 mg/L for waters designated WARM, or 6 mg/L for waters designated COLD, as a result of controllable water quality factors"
- Ammonia Toxicity
 - "The concentrations of toxic pollutants in the water column, sediments or biota shall not adversely affect beneficial uses."

• Reference watershed approach for allocations eliminates need for in-lake nutrient targets

- Reference model to CDF target for chlorophyll-a
- Based on top 1 meter of model output
 - GLM average across lake surface
 - AEM3D output for points in model corresponding to compliance monitoring locations (CL07 in Main Lake and CL10 in East Bay)

Criterion Reference Curve from Chesapeake Bay water quality standards. Source <u>AmbientWaterCover.qxd</u> (d38c6ppuviqmfp.cloudfront.net)

• Numeric target as cumulative distribution function or exceedance frequency curve

• Dissolved Oxygen as percent of volume above 5 mg/L

Depth Below Surface Months -

Depth (m)	Profile 1	Profile 2	Brofilo 3	Profile A		Profile 5	Profile 6	Profile 7	Profile 8	Profile 9	Profile 10	Profile 11	Profile 12	Profile 13	Profile 14	Profile 15	Profile 16	Profile 17	Profile 18	Profile 19	Profile 19	Profile 20	Profile 21	Profile 22	Profile 23	Profile 24	Profile 25	Profile 26	Brofilo 37	LLOIIIE Z /	Profile 28	Profile 29	Profile 30	Profile 31	Profile 32	Profile 33	Profile 34	Profile 35	Profile 36	Profile 37	Profile 38	Profile 30		Profile 40	The allocat	Profile 42	Profile 43	Profile 44	Profile 45	Profile 46	Profile 47	Profile 48	Profile 49	Profile 50	Profile 51	Profile 52	Profile 53	Profile 54	Profile 55	Profile 56	Profile 57	Profile 58	Profile 59	Profile 60
1	8.5	11.1	8.	7 7.	6 7.	.1 6	.7 7	7.0	8.6	7.6	6.9	6.3	6.5	6.5	7.6	7.8	7.3	7.0	6.7	7 7.	4 7	.7	7.4	6.5	6.2	6.5	7.6	7.9	7.	2 6	.4 7	.5 7	7.1	8.7	11.4	8.9	7.8	7.3	6.9	7.1	1 8.9	9 7;	8 7	.1 6	56	.7 6.	.7 7.	.8 8	.0 7	.5 7	.2 (5.8	7.6 7	7.9	7.6	6.7	6.3	6.6	7.8	8.1	7.4	6.5 7	7.7	7.3
2	8.5	11.1	8.	7 7.	67.	.1 6	.7 7	7.0	8.6	7.6	6.9	6.3	6.5	6.6	7.6	7.8	7.3	7.1	6.7	7.7.	4 7	.7	1.4	6.5	6.1	6.5	7.6	7.9	7.	2 6	.4 7	.5 7	7.1	8.7	11.4	8.9	7.8	7.2	6.9	7.1	1 8.9	9 7;	8 7	.1 6	56	.7 6	7 7	.7 8	.0 7	.5 7	.2 6	5.9	7.6 7	7.9	7.6	6.7	6.3	6.7	7.8	8.1	7.4	5.5 7	7.7	7.3
з	8.5	11.1	8.	7 7.	6 7.	.1 6	.7 7	7.0	8.6	7.6	6.9	6.4	6.5	6.6	7.5	7.8	7.3	7.1	6.7	7 7.	4 7	.7	7.5	6.6	6.2	6.5	7.6	7.9	7.	2 6	.4 7	.6 7	7.1	8.7	11.4	8.9	7.8	7.2	6.9	7.1	1 8.	8 73	8 7	.1 6	56	.7 6.	7 7	.7 8	.0 7	.5 7	.2 (5.9	7.6 7	7.9	7.6	6.7	6.3	6.7	7.8	8.1	7.3	6.5 7	7.8	7.3
4	8.5	11.2	8.	7 7.	67.	.1 6	.7 7	7.0	8.3	7.6	7.0	6.4	6.6	6.5	7.3	7.8	7.3	7.1	6.7	7.7.	4 7	.7	7.4	6.5	6.2	6.5	7.6	7.9	7.	2 6	.4 7	.6 7	7.2	8.7	11.4	8.9	7.8	7.2	6.9	7.1	1 8.	5 7.	8 7	.1 6	66	.7 6.	.7 7	.5 8	.0 7	.5 7	.2 (5.9	7.6 7	7.9	7.6	6.7	6.4	6.7	7.8	8.1	7.3	6.5 7	7.8	7.3
5	8.5	11.2	2 8.	7 7.	67.	.o e	.7 7	7.0	8.2	7.6	7.0	6.4	6.6	6.5	7.2	7.8	6.6	6.6	6.7	7.7.	4 7	.6	1.4	6.5	6.2	6.5	7.6	7.8	3 7.	2 6	.4 7	.6 7	7.2	8.7	11.4	8.9	7.8	7.1	6.9	7.1	1 8.4	4 73	8 7	.1 6	66	.7 6	7 7	.4 8	.o e	i.8 6	.8 6	5.9	7.6 7	7.8	7.6	6.7	6.3	6.7	7.8	8.0	7.4	6.6 7	7.8	7.3
6	8.5	11.1	8.	5 7.	56	66	7 7	7.0	8.1	6.9	6.2	6.4	6.6	6.5	6.9	7.4	7.6	6.0	6.7	7.7.	46	.9	1.9	6.2	6.2	6.5	7.6	7.8	3 6.	97	.2 7	.5 7	7.2	8.7	11.4	8.8	7.7	6.7	6.9	7.2	2 8.3	3 7.	16	.4 6	66	7 6	7 7	.1 7	.6 7	.8 6	.2 6	5.9	7.6 7	7.0	5.0	6.3	6.3	6.7	7.8	8.0	7.0	7.4 7	7.7	7.3
7	8.5	10.8	8.	4 6.	4 6	.4 6	.7 7	7.0	7.4	5.9	6.0	6.3	6.6	6.6	6.6	6.5	6.0	6.8	6.7	7.7.	4 7	.7	1.0	6.0	6.2	6.5	7.6	7.8	3 6.	97	.1 6	.4 7	7.1	8.7	11.1	8.6	6.6	6.5	6.9	7.3	2 7.	5 6.	16	.2 6	56	.7 6.	7 6	.7 6	7 6	i.2 7	.0 6	5.9	7.6 7	7.9	4.1	6.2	6.3	6.7	7.8	8.0	7.1	7.3 6	6.6	7.3
8	8.5	9.0	7.	7 6.	2 6	16	77	7.1	6.5	4.0	5.5	6.4	6.6	6.5	6.4	6.5	6.0	6.5	6.7	7.7.	4 7	.4	L.6	3.9	5.8	6.5	7.6	7.4	ŧ 6.	3 7	.0 5	.0 7	7.1	8.7	9.2	7.9	6.4	6.3	6.9	7.	3 6.3	7 4.	1 5	.6 6	56	.7 6.	76	56	.7 G	i.2 e	.7 (5.9	7.6 7	7.6	1.6	4.0	5.9	6.7	7.8	7.6	6.5	7.2 5	5.1	7.3
9	8.5	7.7	6.	5 5.	56	4 6	.6 7	7.0	6.3	3.5	1.0	6.0	6.4	6.4	7.4	6.5	5.8	6.3	6.6	5 7.	47	.3 (1.8	3.5	5.7	6.3	7.6	7.3	8 6.	2 4	.0 4	9 6	5.8	8.7	7.9	6.6	5.6	6.6	6.8	7.3	2 6.4	4 з.	6 1	.0 6	26	.6 6.	.6 7	.6 6	.7 5	i.9 e	.5 6	5.7	7.5 7	7.5	0.8	3.6	5.8	6.4	7.7	7.5	6.4	4.1 5	5.0	7.0
10	8.5	7.9	6.	э з.	9 1	.6 6	.4 7	7.0	6.4	4.1	0.5	1.0	6.6	6.4	5.7	6.0	0.2	6.2	2 6.4	4 7.	2 7	.5	L3	3.0	0.0	5.3	7.4	4.2	2 3.	0 3	1.5 4	.8 6	5.1	8.7	8.0	7.1	4.0	1.7	6.6	7.1	1 6.	6 4.	2 0	.5 1	06	8 6	65	96	2 0).2 E	.4 (5.6	7.4 7	1.7	1.3	3.1	0.0	5.4	7.6	4.3	3.1	3.6 4	4.9	6.2
11	8.5	7.7	5.	9 2.	7 0.	3 6	.4 7	7.0	6.3	3.6	0.5	0.5	3.1	6.5	4.5	5.0	0.0	0.0	6.4	4 7.	2 7	.3 :	L1	0.0	0.0	2.7	7.4	3.9	2.	9 3	.2 4	.0 3	3.2	8.7	7.9	6.0	2.8	0.3	6.6	7.3	2 6.4	4 З.	7 0	.5 0	53	.2 6	64	.6 5	.1 0	0.0 0	.0 (5.5	7.4 7	7.5	1.1	0.0	0.0	2.7	7.6	4.0	3.0	3.3 4	4.1	3.3
12	8.5	7.6	5.	4 2.	з 0.	2 6	17	7.0	6.2	3.1	0.1	0.5	0.3	6.5	4.2	1.2	0.0	0.0	6.9	7.	2 7	.2	L.O	0.0	0.0	0.0	7.4	3.8	3 2.	2 0	.o 3	.2 0	0.1	8.7	7.7	5.5	2.4	0.2	6.3	7.3	2 6.	3 3.	2 0	.2 0	5 O	3 6	64	.3 1	.2 0	0.0 0	.0	.1	7.4 7	7.3	1.0	0.0	0.0	0.0	7.6	3.9	2.3	0.0 3	3.3	0.1
13	8.5	7.6	6.	2 2.	9 0.	4 3	.6	7.0	6.1	3.4	0.2	0.0	0.0	6.5	4.5	1.4	0.0	0.0	0.0	4 .	0 7	.1	L.5	0.0	0.0	0.0	7.4	3.8	B 0.	0 0	0.0	0.0	0.0	8.7	7.8	6.4	з.0	0.4	3.7	7.3	2 6.3	з з.	5 0	.2 0	0 0	0 6	64	.6 1	.4 0	0.0 0	.0 (0.7	4.1 7	7.3	1.5	0.0	0.0	0.0	7.6	3.9	0.0	0.0 0	0.0	0.0
14	8.5	7.0	5.	7 1.	8 0.	1 0	.2	7.0	7.4	2.8	0.0	0.0	0.0	6.4	3.9	0.7	0.0	0.0	0.0	9 4.	0 6	.7 ().9	0.0	0.0	0.0	7.4	3.6	5 0.	0	0.0	0.0	0.0	8.7	7.2	5.8	1.9	0.1	0.2	7.3	2 7.	5 2.	9 0	.0 0	0 0	.0 6.	.6 4	.0 0	.7 0	0.0 0	.0 (0.0	4.1 6	5.9	0.9	0.0	0.0	0.0	7.6	3.6	0.0	0.0 0	0.0	0.0

• Numeric target as cumulative distribution function or exceedance frequency curve

Step 1. Calculate fraction of Main Lake volume with DO > 5mg/L

Example for Profile 1 of 20

Comp	liance Assessment
comb	

- Dissolved Oxygen
- X-axis is percent of volume above 5 mg/L
- Y-axis is frequency
- More high-DO water at same frequency is better

Example for Pro	offiell of 50				
Water Surface Elevation (ft msl)	Depth of Water (m)	Profile 1 DO Readings (mg/L)	Cumulative Volume (AF)	Incremental Volume (AF)	Volume with DC > 5 mg/L
1382	14.0	9.0	6,537	829	829
1379	13.0	8.5	5,709	766	766
1376	12.0	8.0	4,943	705	705
1373	11.0	8.0	4,238	645	645
1370	10.0	7.0	3,593	587	587
1367	9.0	7.0	3,007	530	530
1364	8.0	6.5	2,477	475	475
1361	7.0	6.0	2,002	421	421
1358	6.0	6.0	1,581	369	369
1355	5.0	5.5	1,212	318	318
1352	4.0	4.5	893	269	0
1349	3.0	4.0	624	221	0
1346	2.0	3.0	403	175	0
1343	1.0	2.5	227	227	0
			Volume (AF)	6,537	5,644
		Fra	ction above 5 mg/L DO	8	36%
Percentile	Fraction of Lake	Reference CDF		*****	
Percentile	Volume with DO > 5 mg/l	(Numeric Target)	80%		
0%	24%	13%	80%		
3%	45%	13%	Q	-Numeric Targe	t
7%	62%	45%	- ne		
10%	62%	54%	ç 60%	-weasured (5-h	3/
14%	69%	62%****	e F		
17%	76%	62%	Ę		
21%	81%	62%	40%		
24%	81%	69%	Ĕ		
28%	86% 🔺	76%	J D		
31%	90%	76%	20%	(- 5
34%	90%	76%	2070	J	
38%	90%	76%		5	
41%	92%	81%			
45%	94%	86%	0%		
48%	96%	90%	0% 20	% 40% 60%	% 80% 100%
52%	98%	90%	9	6 Water Column >	> 5 mg/l
55%	100%	90%			
59%	100%	90%			
62%	100%	95%			
66%	100%	100%		Compliance √	
67.1004	100%	100%			
67-100%	100%	100%			

Compliance Assessment

- Algae as chlorophyll- a
- X-axis is concentration of chlorophyll-a in top 1 meter of lake
- Y-axis is frequency
- Lower chlorophyll-a concentration at same frequency is better

Step 3. Plot measured and modeled chlorophyll-a (ug/L) as CDF

%ile	Observed Data	Reference Model	%ile	Observed Data	Reference Model	10
0%	24	49	51%	131	146	. 10
3%	29	57	54%	134	149	
5%	30	71	56%	134	152	
8%	34	74	59%	144	154	ୁ ଚୁ °
10%	42	76	62%	147	157	ner
13%	49	80	64%	150	159	6g
15%	55	84	67%	151	162	<u>ل</u> ت 6
18%	65	86	69%	152	165	ž,
21%	70	88	72%	155	169	oi .
23%	72	91	74%	157	172	_ Ē 4
26%	76	95	77%	158	175	5
28%	77	101	79%	179	181	
31%	104	109	82%	179	188	2
33%	111	115	85%	186	194	
36%	114	121	87%	188	200	
38%	116	125	90%	196	203	
41%	123	131	92%	197	206	
44%	126	135	95%	200	210	
46%	127	139	97%	204	213	
49%	127	143	100%	216	222	

Other Project Updates

Regulatory Changes

- Lake Elsinore 303(d) listing for TDS
- Lake Elsinore 303(d) listing for cyanotoxins
 - Based on caution trigger 6 ug/L microcystin
- Nutrient criteria based on cyanotoxin risk to swimmers
 - EPA stressor-response models
 - California refinement through biostimulatory workgroup

Coordination for Non-Dairy CAFO Source

- Source assessment for 2018 draft TMDL Technical Report involved a single CAFO land use with assumptions linked to dairy permit
- Regional Board working on a separate permit for non-dairy CAFOs (anticipated for 2024) – separate load allocation in 2023 update
- Estimation of nutrient load in updated source assessment for non-dairy CAFO based on literature values
- About five facilities impacted small load relative to watershed
 - Covered poultry operations
 - Horse ranches

Schedule

- Comments on Source Assessment and Allocations received
- Drafts of Numeric Targets, Linkage Analysis, and Implementation to be submitted for Task Force review week of May 1
- Other sections with less significant changes to follow
- Regional Board planning staff in process of scheduling workshop and adoption for the 2023-24 fiscal year

Backup slides – DI Plots Lake Elsinore

