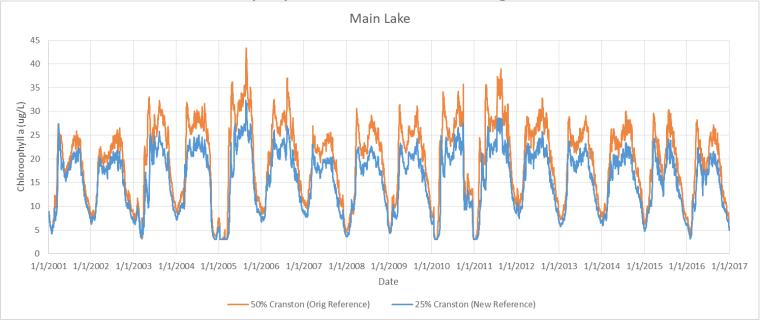
Supplemental Lake Water Quality Modeling for Canyon Lake

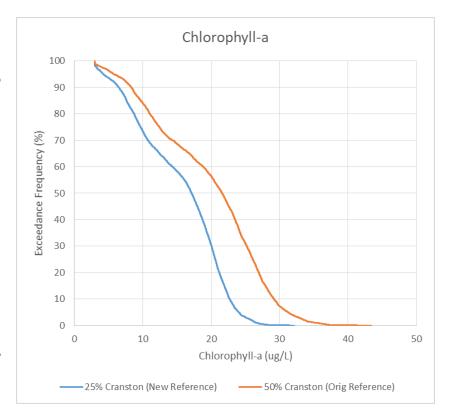
Presented by Dr. Michael Anderson

6/23/2021

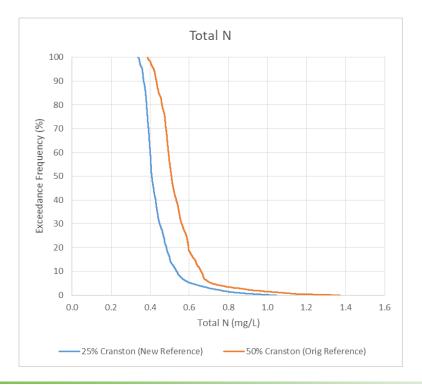
AEM3D: Canyon Lake

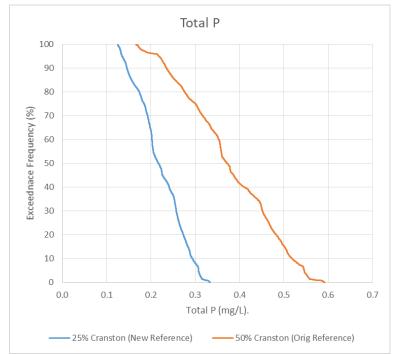

- AEM3D model of Canyon Lake was developed to replace ELCOM-CAEDYM which is no longer supported
- Input files from ELCOM-CAEDYM calibration simulation have been migrated over to AEM3D
- AEM3D reproduced ELCOM-CAEDYM results very well
 - lake level and thermal stratification reproduced almost exactly
 - DO, chlorophyll-a and nutrient concentrations reproduced closely
- Model simulation times remain very long (about 1 day/year simulated)

Based upon discussions with Regional Board staff over the past several months, additional scenarios were identified

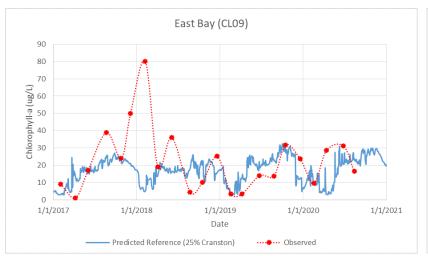

Parameter	Existing Conditions	Scenario 1a: Reference Condition (2018) (50% Cranston)	Scenario 2: Alternative Reference Condition (25% Cranston)	Scenario 3: Sediment Flux Sensitivity (25% Cranston)	Scenario 4: Hydrologic Sensitivity (25% Cranston)
SJR Inflow TP (mg/L)	0.69	0.32	0.16	0.16	0.16
SJR Inflow TN (mg/L)	2.16	0.92	0.68	0.68	0.68
Salt Cr Inflow TP (mg/L)	0.46	0.32	0.16	0.16	0.16
Salt Cr Inflow TN (mg/L)	2.40	0.92	0.68	0.68	0.68
Sediment P Flux (mg/m²/day)	15.5	7.8	4.3	4.7	4.3
Sediment N Flux (mg/m²/day)	44.0	22.0	13.1	14.4	13.1
Runoff Flow	USGS gauges (2000 - 2016)				70% of USGS gauge (2000 - 16)

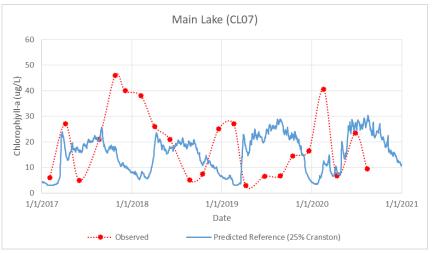
Effects of Lowered Inflow Concentrations (50% \rightarrow 25% Cranston)


 Lowered inflow concentrations associated with 25th percentile Cranston Guard Station data yielded predictably lower levels of nutrients and chlorophyll-a in the lake, e.g.:

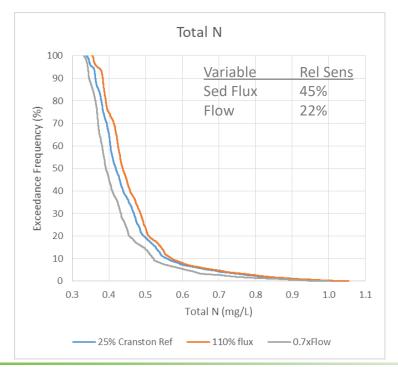


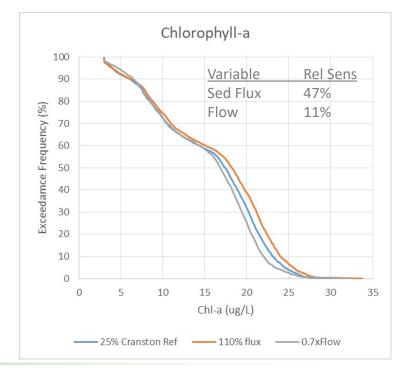
- Concentrations presented as CDFs were thus also shifted to lower values using 25th percentile Cranston Guard Station inflow data
- Median chlorophyll-a concentrations decreased from 21.6 to 17.2 µg/L (21% reduction)
- Maximum concentrations decreased from 43.4 to 32.2 μg/L (26% reduction)




 Nutrient concentrations, presented as CDFs, were thus also shifted to lower values using 25th percentile Cranston Guard Station inflow data

How does Canyon Lake water quality compare with new Reference?





- East Bay chlorophyll-a concentrations were in line with 25%
 Cranston-predicted concentrations for most of past 4 years
- Main Lake concentrations deviated more, seasonal trends distorted

Sensitivity/Uncertainty Analysis

 Simulations in which sediment flux was increased, or inflow volumes were decreased, shifted CDFs for 25% Cranston reference

