Santa Ana Regional Monitoring Program June 2021 Update Steven Wolosoff Paul Caswell 6/21/21 #### Outline - QA/QC Sampling - Updates to Monitoring Plan and QAPP - Coliphage Update ## QA/QC Sampling Schedule - Per the current RBMP QAPP, field QA samples are collected during each day of sampling - As the program has changed and expanded so the QA sampling expanded alongside it - In 2020-21 monitoring year, QA samples were collected at a frequency of 27% - SWAMP guidance recommends QA samples collected at about 5% of total samples annually ### **QA/QC Sampling** - Suggest updating guidance in QAPP to collect QA samples once/week at rotating sites. - This will reduce annual QAQC sampling rate to about 10% ### Monitoring Plan and QAPP updates - Update QAPP per agreed upon Field QA Sampling guidance - Incorporate new priority 3 waterbody monitoring sites (San Timoteo Creek, Warm Creek) - Move Lake Elsinore sampling location to Elm Grove Beach - 4. Extend monitoring for Serrano Creek (priority 3 water) to assess potential improvements from changing watershed land uses - 5. Update key players since August 2019 # Coliphage Water Quality Crieria Development ### Coliphage - Coliphages are bacteriophages of E.coli - Bacteriophage is a virus that infects and replicates within bacteria - Coliphages are: - Of fecal origin/highly concentrated in sewage - Physically similar to enteric viruses of concern - Similar persistence patterns to enteric viruses - No appreciable re-growth in ambient waters - Non-pathogenic - Two types of coliphage being reviewed - Male specific (F+) - Reacts similarly to mRNA - Somatic - Reacts similarly to DNA virus ## Coliphage Criteria Derivation to Date | Date | Milestone | | |-----------|--|--| | 2015 | Review of Coliphages as Possible Viral Indicators of Fecal Contamination for Ambient Water Quality | | | 2015 | Stakeholder webinar | | | 2016/2017 | Coliphage Expert Workshop; fact sheet (summer 2016) and proceedings (2017) | | | 2017/2018 | Analytical method multi-lab validation and publication | | | 2019/2020 | Continued research to better understand coliphage contamination | | | 2021 | Draft coliphage criteria; send for external peer review | | #### Current coliphage status Table 23. Attributes of fecal contamination indicators. | Indicator
Attribute | Enterococci
(e.g. EPA Method 1600) | E. coli
(e.g. EPA Method 1603) | Coliphages
(e.g. EPA Method 1602) | |--|---|---|--| | Intestinal microflora of warm-
blooded animals | Yes | Yes | Yes | | Present when pathogens are present and absent in uncontaminated samples | Present when fecal
pathogens are present, but
may also be present in
nonfecally contaminated
ambient water. | Present when fecal
pathogens are present, but
may also be present in
nonfecally contaminated
ambient water. | Present when fecal pathogens are
present, but is likely absent in
nonfecally contaminated ambient
water. | | | Not indicative of viruses in WWTP effluent. | Not indicative of viruses in WWTP effluent. | Better surrogate for viruses than enterococci or <i>E. coli</i> in WWTP effluent. | | Present in greater numbers
than the pathogen (in this case,
human viruses) | Depends on source ^a | Depends on source ^a | In most cases | | Equally resistant as pathogens
(in this case viruses) to
environmental factors | Not as resistant as viruses | Not as resistant as viruses | Under most conditions | | Equally resistant as pathogens
(in this case viruses) to
disinfection in water and
WWTPs | Not as resistant as viruses (except for ozone). | Not as resistant as viruses (except for ozone). | Under most conditions.
However, adenovirus is more
resistant than coliphages and
other enteric viruses to UV
inactivation. | | Should not multiply in the environment | Can multiply in the environment | Can multiply in the environment | Not likely enough to affect
criteria levels | | Detectable by means of easy, rapid, and inexpensive methods | Yes, but need EPA Method
1611 for rapid
enumeration. Other easy
and rapid methods are
available. | Yes, but EPA method is
not considered rapid
(requires overnight
incubation). Other easy
and rapid methods are
available. | Yes, but Method 1601 needs
validation for quantification.
Other easy and rapid methods are
available. | | Indicator organism should be
nonpathogenic | Generally nonpathogenic ^b | Generally nonpathogenic. ^c | Nonpathogenic | | Demonstrated association with
illness from epidemiological
studies | Yes | Yes | Yes | | Specific to a fecal source or
identifiable as to source of
origin In raw sewage FIB are present | Not EPA Method 1600, but
MST methods being
developed. | but MST methods being developed. | Not EPA Method 1602, but MST methods being developed. | ^a In raw sewage FIB are present in greater numbers than pathogens. Viruses are less vulnerable to treatment processes than bacteria, so could survive treatment in greater numbers than bacteria. - Ongoing debate and research for the ability of coliphages to predict the concentration of human enteric viruses - Coliphage is currently being used as an indicator in groundwater and reclaimed water - EPA continuing to work on developing WQ standards b Enterococci can be pathogenic or antibiotic resistant in some settings, like hospitals, but generally not in ambient water. ^c Enterohemorrhagic E. coli, specifically O157:H7, grows poorly at 44°C and is often negative for beta-glucuronidase, so is not detected by Method 1603 (Degnan and Standridge, 2006). Other pathogenic strains could be detected by EPA Method 1603