Update to Lake Elsinore and Canyon Lake Nutrient TMDL Task Force

Steven Wolosoff, CDM Smith Dr. Paula Kulis, CDM Smith Dr. Michael Anderson

5/17/2021

Outline

- Supplemental model scenario results for Lake Elsinore
- Stormwater as a resource for lake water quality
- Next steps

Supplemental Modeling in Lake Elsinore

Key parameters for supplemental scenarios

Parameter	Existing Condition	Scenario 1a: Reference Conditions	Scenario 2: Alternative Reference Condition	Scenario 3: Maximized Stormwater Retention
Hypsography	With levee	Without levee	With levee	With levee
Inflow TP (mg/L) in Runoff	0.39	0.32	0.16	0.16
Inflow TN (mg/L) in Runoff	1.64	0.92	0.68	0.68
Internal TP Flux (mg/m ² /day)	9.0	5.4	3.7	3.7
Internal TN Flux (mg/m ² /day)	75.0	37.0	31.1	31.1
EVMWD discharge	Metered Inflows	None	None	None
Runoff Flow		70% of (USGS gauge + local runoff)		

Existing Condition Results

- Calibration 2000-2014
- Validation 2015-2020

Existing Condition Results

- Total nutrients includes bioavailable and non-bioavailable pools
- Sharp rises follow large storms, resuspension at low lake levels

Scenario 1a: Dec 2018 Reference Condition

 Comparison of DYRESM-CAEDYM with GLM for reference condition employed in December 2018 draft technical report

Chlorophyll-a for all scenarios

- CDFs of 100yr simulations with DYRESM-CAEDYM and GLM
- Chlorophyll-a most impacted by lake level
- Annual averages of model results may provide a simpler compliance metric

Chlorophyll-a for all scenarios

 Return of lake following reference condition desiccation event in 2015; 2014 for enhanced watershed runoff retention scenario

Dissolved Oxygen for all scenarios

CDFs of 100yr simulations with DYRESM-CAEDYM and GLM

Ammonia

CDFs for DYRESM-CAEDYM and GLM scenarios

Internal TP Load from Sediment

 About half of modern estimate of 33,060 kg/yr reported in 2004 TMDL based on Anderson core-flux studies

Internal TN Load from Sediment

 About half of modern estimate of 197,00 kg/yr reported in 2004 TMDL based on Anderson core-flux studies

Stormwater as a Resource for Lake Elsinore

One Water Perspective for Lake Elsinore

- Integrated water quality planning of multiple sources of water to maximize beneficial uses
- Concept Stormwater provides a net benefit to Lake Elsinore water quality
- Quantitative analysis using calibrated GLM
- Implications for setting allocations and implementation

Reference Scenario Hydrology

- Water level simulation for reference condition (i.e. no reclaimed water)
- With and without levee

Nater Level (feet)

 Measured inflows compared with 70% of measured inflows, with levee

Current Hydrology with Reclaimed Water

- Water level simulation for current RW addition at measured inflows compared with 70% of measured inflows (estimate after on-site retention of WQ storm for all developed lands)
- Stormwater is an important source of fresh water for Lake Elsinore
- Lower TDS than reclaimed water

Lake Water Quality Results

Decreased watershed runoff reduces loading to Lake
Elsinore, but increase bioavailable nutrients in water column

Lake Water Quality Results

 Decreased watershed runoff reduces loading to Lake Elsinore, but increases algae

Lake Water Quality Results

 Decreased watershed runoff reduces loading to Lake Elsinore, but increase bioavailable nutrients in water column

	Watershed TN Load (kg/yr)	TN in Lake Elsinore (mg/L)	Watershed TP Load (kg/yr)	TP in Lake Elsinore (mg/L)
Measured Runoff	14,250	4.74	3,389	0.22
Maximize Stormwater Retained in Watershed	9,975 🐣	5.47 👉	2,372 👆	0.48 👉

Next Steps

Next Steps

- To adequately address peer review comments, Regional Board requires a change in the current numeric targets and allocations to GLM derived outputs for the alternative reference condition
 - With levee
 - 25th percentile of Cranston Guard Station as reference nutrient concentration (0.16 mg/L TP; 0.68 mg/L TN)
- Update technical report
- Adopt TMDL revision