Lake Water Quality Models - Update

Lake Elsinore and Canyon Lake Nutrient TMDL Task Force

Steven Wolosoff Paula Kulis

9/22/2020

Lake Simulation Tasks in 2020

Lake Modeling Tasks for 2020-2021

- Migration of sunsetting CAEDYM model, used in TMDL revision science basis for Lake Elsinore and Canyon Lake to new tools
- Extension of the simulation period for scenarios in TMDL revision simulation periods through 2020

Linkage Analysis Simulation Periods	Lake Elsinore	Canyon Lake
TMDL revision	1916 – 2016	2000 – 2016
Current effort	1916 – 2020	2000 - 2020

Why Update Models

- Use of linkage analysis models included as one approach to demonstration compliance in revised TMDL
- Show that measured concentrations for response targets are better than modeled conditions for actual hydrology (gauged inflows extending beyond 2016) with reference watershed nutrient concentrations

Why Update Models

- Support ongoing BPA adoption process, future regulatory changes, Task Force science questions
- Support future evaluations of in-lake water quality controls
 - Effectiveness of ongoing operation of existing controls
 - Evaluation of alternatives to retrofit existing or consider new in-lake controls
- Michael Anderson retirement, sunsetting of CAEDYM

Old and New Model Platforms

CAEDYM-DYRESM Configuration

Updating the models

Three WQ Models

Model Update Process

Mapping Modeled Processes and Parameters

- Documenting
 - Parameters
 - Options
- Examples
 - Light penetration
 - Temperature dependence
 - Salinity dependence
 - Zooplankton behavior
 - Phytoplankton speciation

- Setup Differences in AED2
 - Files arranges differently
 - Porting all settings/parameters over to AED2
 - So far no differences in equations found

AED2 Setup

- Modular
 - Tracers
 - Oxygen
 - Inorganic nutrients
 - Organic Matter
 - Phytoplankton
 - Zooplankton
 - Sediment flux

- Confirming that parameters are treated in the same way
 - Units, equations, options
 - Examples:
 - Light penetration
 - Temperature effect on phytoplankton/zooplankton
 - Salt effect on phytoplankton and on zooplankton

Next Steps

- Confirm CAEDYM vs AED2 equations/options
 - In progress
- Document all parameters in existing CAEDYM
 - In progress
- Compare new model results with CAEDYM
- Investigate some calibration parameters
 - Light penetration
 - Algal species, optimum temperature windows

Parameters and other details: extra slides

AED2

Features included in Lake Elsinore CAEDYM

Included

- TSS (2 classes)
- Organic Carbon
- Inorganic Carbon
- Cyanobacteria
- Constant sediment flux
- Nutrients
- Zooplankton (2 species)

Not Included

- Metals
- Refractory Carbon
- pH
- DIC
- Bacteria
- Oceanic biology

Biological components in our CAEDYM Application – and porting into AED2

Group 2

Phytoplankton Treatment in CAEDYM

Phytoplankton Settings for Lake Elsinore

- Single algae species
- Constant Settling and Resuspension
- Retain N and P in biomass
- Salinity limitation on respiration
- No photo-inhibition of production

Resuspension

- Constant settling velocity
- Settling velocity = -.230E-06 m/s
- Critical shear stress for resuspension = 0.001 N/m²
- Resuspension rate = 0.800E-02 mg/m^2/sec
- Half saturation constant for resuspension = 0.010 mg/m²
- Sediment survival time = 2.000 days

Light impact on growth

- Non-photoinhibited light limitation
- Photosynthesisirradiance curve parameter
 120.0 uF (m A2 (c)
 - = 130.0 uE/m^2/s
- Specific attenuation
 coefficient = 0.01400 ug
 Chla/L/m

K_d	=	$K_w($ attenuation due to pure water - constant $)$
	+	$\sum_{i}^{nphy} K_{A_i}$ specific attenuation due to phytoplankton groups
	+	$\sum_{b}^{ndom} K_{DOC_b} \text{specific attenuation due to dissolved organic carbon}$
	+	$\sum_{b}^{npom} K_{POC_b} \text{specific attenuation due to particulate organic matter}$
	+	$\sum_{s}^{nsol} K_{SS_s} \text{specific attenuation due to inorganic particles}$
	+	$\sum_{j}^{nmac} K_{M_j} \text{specific attenuation due to macroalgae}$

Basic Phytoplankton Parameters

- Growth rate = 1.200 /day
- Respiration rate = 0.080 /day
- Fraction of respiration relative to total loss = 0.700
- Temperature multiplier for respiration = 1.030
- Temperature multiplier for growth = 1.060
- Standard temperature = 20.000 deg C
- Optimum temperature = 28.000 deg C
- Maximum temperature = 35.000 deg C

Zooplankton

Representation in CAEDYM

Zooplankton Features

- Grazing = f(Phytoplankton)
 - Constant rate
- Temperature dependent respiration
- Salinity dependence
- DO tolerance limit