RECOMPUTATION OF AMBIENT WATER QUALITY in the Santa Ana River Watershed **FOR THE PERIOD 1999 TO 2018** # Recomputation of Ambient Water Quality in the Santa Ana River Watershed for the Period 1999 to 2018 for the SAWPA – Basin Monitoring Program Task Force 7/8/2020 # **Table of Contents** | | Ta | able of Co | ntents | i | |---|------------|-------------------|---|-------| | | | | es | | | | Li | st of Figui | res | iv | | | Li | st of Appe | endices | iv | | | G | lossary of | Terms | v | | 1 | In | itroductio | n | 1 | | | 1.1 | Backgı | ound | 1 | | | 1.2 | Conte | nts of the Technical Memorandum | 6 | | | 1.3 | Electro | onic Deliverables | 6 | | 2 | M | lethods fo | or the Recomputation of Ambient Water Quality | 12 | | | 2.1 | Data C | Collection (Task 1a) | 13 | | | 2.2 | Proces | ss and Upload Historical Data (Task 1c) | 14 | | | 2.3
1d) | Develo | op Water-Quality Point Statistics and Average Values for TDS and Nitrate at Wells (7 | Гask | | | | 2.3.1 | Review Time-Series Data | 15 | | | | 2.3.2
Wastewa | QA/QC Tests Adapted from the Methods for the Examination of Water and | 15 | | | | 2.3.3 | Define Analysis Period and Annualize the Data | 17 | | | | 2.3.4
of Water | Shapiro-Wilk Test for Normality, Identification of Potential Outliers, and Developm Quality Point Statistics and Average Values | | | | 2.4 | Estima | ite Regional TDS and Nitrate in Groundwater (Task 1e) | 21 | | | | 2.4.1 | Water Quality Point Statistics and Average Values | 21 | | | | 2.4.2 | Develop and Digitize Water Quality and Water Level Contours | 24 | | | 2.5 | Comp | ute Current Ambient TDS and Nitrate for Groundwater Management Zones (Task 1 | f) 24 | | 3 | Aı | mbient W | ater Quality Results for the 2018 Recomputation | 28 | | | 3.1 | 2018 (
29 | Current Ambient TDS and Nitrate Concentrations for Groundwater Management Zo | nes | | | 3.2 | Assimi | lative Capacity Determination | 40 | | 4 | In | terpretive | e Tools | 47 | | | 4.1 | GIS Or | n-Line AWQ Data Explorer | 48 | | 4.2 | 2 | Change in the Spatial Distribution of TDS and Nitrate in Groundwater at the Santa Ana River | | | | | | | | | | | |-----|---|---|---|----|--|--|--|--|--|--|--|--| | W | ater | shed Sc | ale | 50 | | | | | | | | | | 4.3 | 3 | Temporal Trends in TDS and Nitrate Concentrations | | | | | | | | | | | | 4.4 | 1 | Interp | retative Tools Summary by Subwatershed | 59 | | | | | | | | | | 4.5 | 5 | Well A | ttrition Analysis | 60 | | | | | | | | | | 4.6 | 5 | Interp | retive Tools Analysis | 72 | | | | | | | | | | | 4 | .6.1 | Orange County Groundwater Management Zone | 72 | | | | | | | | | | | 4 | .6.2 | Chino South GMZ | 75 | | | | | | | | | | | 4 | .6.3 | Riverside-A GMZ | 78 | | | | | | | | | | 5 | Rec | ommen | dations | 80 | | | | | | | | | | 5.3 | 1 | Object | cive of the Triennial Ambient Water Quality Recomputation | 80 | | | | | | | | | | 5.2 | 2 | Chang | e the AWQ Recomputation Period | 80 | | | | | | | | | | 5.3 | 3 | Impro | ve the Data Compilation, Formatting, and QA/QC Process | 81 | | | | | | | | | | 5.4 | 4 Review AWQ Conceptual Models | | | | | | | | | | | | | 5.5 | 5.5 Consider Pursuing Grant Funding to Perform Supplemental AWQ Tasks | | | | | | | | | | | | | 5.6 | ô | Respo | nse to Regional Board Request | 84 | | | | | | | | | | 6 | Ref | erences | | 85 | | | | | | | | | # List of Tables | Table 1-1. TIN/TDS Phase 2A Results, Total Dissolved Solids (Page 1 of 2) | 7 | |---|----------| | Table 1-2. TIN/TDS Phase 2A Results, Nitrate (Page 1 of 2) | <u>9</u> | | Table 1-3. Contents of Appendix A | 11 | | Table 2-1. Requisite Data Fields | 14 | | Table 2-2. Groundwater Management Zone Analytics (Page 1 of 2) | 22 | | Table 3-1. TDS Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity (Page | | | Table 3-2. Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity (Pa
2) | age 1 of | | Table 4-1. Systemic and Methodological Factors Affecting Groundwater Quality | 48 | | Table 4-2: Key Well Trends for TDS, 1999-2018 (Page 1 of 2) | 55 | | Table 4-3: Key Well Trends for Nitrate, 1999-2018 (Page 1 of 2) | 57 | | Table 4-4: Well Attrition/Well Additions for TDS, 1999-2018 (Page 1 of 2) | 64 | | Table 4-5: Well Attrition/Well Additions for Nitrate, 1999-2018 (Page 1 of 2) | 66 | | Table 4-6: Well Attrition/Wells at Risk for TDS, 1999-2018 (Page 1 of 2) | 68 | | Table 4-7: Well Attrition/Wells at Risk for Nitrate, 1999-2018 (Page 1 of 2) | 70 | | Table 4-8. Production of GWRS FPW and Injection and Spreading Locations | 73 | # List of Figures | Figure 1-1. Groundwater Management zone Boundaries and Water Quality Objectives for 1DS and | | |---|-------| | Nitrate. | 3 | | Figure 2-1. Flow Chart for Outlier Identification and Computation of Point Statistics and Averages | 19 | | Figure 2-2. Locations of TDS Point Statistics and Averages in the Santa Ana River Watershed | 26 | | Figure 2-3. Locations of Nitrate Point Statistics and Averages in the Santa Ana River Watershed | 27 | | Figure 3-1. Santa Ana River Watershed – 2018: Aquifer Thickness | 31 | | Figure 3-2. Santa Ana River Watershed – 2018: Specific Yield | 32 | | Figure 3-3. Santa Ana River Watershed – 2018: Volume of Groundwater in Storage | 33 | | Figure 3-4. Santa Ana River Watershed – 2018: Ambient Water Quality – TDS Concentrations | 34 | | Figure 3-5. Santa Ana River Watershed – 2018: Mass of TDS in Groundwater | 35 | | Figure 3-6. Santa Ana River Watershed – 2018: TDS Concentration Change (1996-2015 to 1999-201 | 8)36 | | Figure 3-7. Santa Ana River Watershed – 2018: Ambient Water Quality - Nitrate Concentrations | 37 | | Figure 3-8. Santa Ana River Watershed – 2018: Mass of Nitrate in Groundwater | 38 | | Figure 3-9. Santa Ana River Watershed – 2018: Nitrate Concentration Change (1996-2015 to 1999-2015) | 2018) | | | 39 | | Figure 3-10. Santa Ana River Watershed – 2018: Assimilative Capacity for TDS | 45 | | Figure 3-11. Santa Ana River Watershed – 2018: Assimilative Capacity for Nitrate | 46 | | Figure 4-1. TDS Change (1996-2015 to 1999-2018) and Key Well Trends | 52 | | Figure 4-2. NO₃-N Change (1996-2015 to 1999-2018) and Key Well Trends | 53 | | Figure 4-3: Well Attrition Analysis - TDS | | | Figure 4-4: Well Attrition Analysis – Nitrate | 63 | | Figure 4-5 Locations of Key Wells with Very Significant Decreasing Trends Downgradient of OCWD | | | Recharge Facilities | 74 | | Figure 4-6 Spatial Distribution of Nitrate Concentrations in Chino-South GMZ | | | Figure 4-7: Spatial Distribution of TDS Concentrations in Chino-South GMZ | | | Figure 4-8: Locations of Selected Monitoring Wells Associated with the Colton Landfill | 79 | # List of Appendices - A. Electronic Deliverables - B. Packets for Subwatershed Areas - C. Comments and Responses # Glossary of Terms AWQ ambient water quality BCVWD Beaumont-Cherry Valley Water District bgs below ground surface BMPTF Basin Monitoring Program Task Force CBWCD Chino Basin Water Conservation District CBWM Chino Basin Watermaster CCWRF Carbon Canyon Water Recycling Facility DBS&A Daniel B. Stephens & Associates, Inc. DDW Division of Drinking Water, California Environmental Protection Agency EC electrical conductivity EDD electronic data deliverable EMWD Eastern Municipal Water District EVMWD Elsinore Valley Municipal Water District FPW Final Product Water ftp file transfer protocol GAMA Groundwater Ambient Monitoring and Assessment Program GIS geographic information system GM geometric mean GMZ groundwater management zone GSE geometric standard error GWRS Groundwater Replenishment System HSPF Hydrologic Simulation Program-FORTRAN IEUA Inland Empire Utilities Agency IRWMP Integrated Regional Water Management Program IWRWG Imported Water Recharge Work Group JCSD Jurupa Community Services District MCL maximum contaminant level MDV most discordant value meg/L milliequivalents per liter MG million gallons MGD million gallons per day mg/L milligrams per liter MS Microsoft msl above mean sea level NPL National Priorities List OCSD Orange County Sanitation District OCWD Orange County Water District POTW publicly-owned treatment works QA/QC quality assurance/quality control RFP request for proposal RFQ request for qualifications RPD relative percent difference RPU City of Riverside Public Utilities RWQCB Regional Water Quality Control Board, Santa Ana Region RWQCP Riverside Regional Water Quality Control Plant SAT Soil Aquifer Treatment SAWPA Santa Ana Watershed Project Authority SBVWCD San Bernardino Valley Water Conservation District SE standard error at student's t SGPWA San Gorgonio Pass Water Agency SNMP salt and nutrient management plan STWMA San Timoteo Watershed Management Authority SWO surface water objectives SWRCB State Water Resources Control Board TDS total dissolved solids TIN total inorganic nitrogen TVWD Temescal Valley Water District USGS US Geological Survey Valley District San Bernardino Valley Municipal Water District WQO water quality objective WRCRWTP Western Riverside County Regional Wastewater Treatment Plant WWTF Wastewater Treatment Facility WWTP Wastewater Treatment Plant YVWD Yucaipa Valley Water District #### **SECTION 1** # Introduction Water Systems Consulting, Inc. (WSC) has prepared this technical memorandum under a contract agreement with the Santa Ana Watershed Project Authority (SAWPA): Task Order No. WSC374-01 for the Triennial Recomputation of Ambient Water Quality for the Santa Ana River Watershed. Included on the
WSC team are the following firms: Geo-Logic, Inc, LeClaire & Associates, and Environmental Science Solutions LLC. The Water Quality Control Plan (Basin Plan) for the Santa Ana River Basin (Region 8) (RWQCB, 2016a) requires the implementation of a watershed-wide total dissolved solids (TDS) and nitrogen groundwater monitoring program to determine ambient water quality in groundwater, assess compliance with groundwater quality objectives, and determine if assimilative capacity exists in groundwater management zones (GMZs). The current Basin Plan requires that the ambient water quality (AWQ) be computed every ### IN THIS SECTION Background Contents of the Technical Memorandum Electronic Deliverables three years. This technical memorandum summarizes the work performed for the current recomputation for the 1999 to 2018 period. In this technical memorandum, the recomputation periods are designated by the ending year; for example, this current period is called the 2018 current AWQ recomputation period. # 1.1 Background The Santa Ana River Watershed comprises portions of San Bernardino, Riverside, Los Angeles, and Orange Counties, has an area of 2,840 square miles, and is home to over 6 million residents. The Santa Ana River is the major stream draining the watershed—about 100 miles in length from its headwaters near Big Bear to its discharge location in Huntington Beach. Figure 1-1 shows the Santa Ana River Watershed, along with the Santa Ana River and its major tributaries. The figure also depicts the Santa Ana River GMZs within sub watersheds, and the TDS and nitrate objectives associated with each GMZ that had sufficient data to make that determination. Locations of wastewater treatment plants (WWTPs) are shown in Figure 1-1. SAWPA is a joint powers authority consisting of five member agencies: Eastern Municipal Water District, Inland Empire Utilities Agency, Orange County Water District, San Bernardino Valley Municipal Water District, and Western Municipal Water District. SAWPA's mission is to "make the Santa Ana River Watershed sustainable through fact-based planning and informed decision-making, regional and multijurisdictional coordination, and the innovative development of policies, programs, and projects (SAWPA, 2011)." In December 1995, a Task Force consisting of 22 water resources agencies in the Santa Ana River Watershed was formed to study what effects and implications salinity—expressed as TDS—and total inorganic nitrogen (TIN) in the groundwater basins in the watershed may have on the long-term sustainability of groundwater supply. SAWPA administered all contracts pertaining to this study, including contracts with the consultants performing the study and the Santa Ana Regional Water Quality Control Board (RWQCB). The consistent input and oversight from the RWQCB were critical to the ultimate attainment of the objectives of the TIN/TDS Task Force. The ongoing participation of decision makers from each of the Task Force members was also key to reaching consensus on the scientific approach and developing an updated Salt and Nutrient Management Plan (SNMP). The process developed in the Santa Ana River Watershed was praised in a report by the Little Hoover Commission (2009). The original project was completed in mid-2003. "On January 22, 2004, the RWQCB incorporated the results of the Nitrogen TDS Task Force study into a Basin Plan Amendment for Nitrogen and TDS and adopted the Basin Plan Amendment. The Task Force agencies were named in that Basin Plan Amendment as responsible for conducting various monitoring programs and analyses to support the results defined in the Basin Plan Amendment" (Task Force, 2004). The current Basin Monitoring Program Task Force (BMPTF) members include the following: - Santa Ana RWQCB Advisory Member - Beaumont-Cherry Valley Water District (BCVWD) - Chino Basin Watermaster (CBWM) - City of Banning - City of Beaumont - Colton/San Bernardino Regional Tertiary Treatment and Wastewater Reclamation - City of Corona - City of Redlands - City of Rialto - City of Riverside - Eastern Municipal Water District (EMWD) - Elsinore Valley Municipal Water District (EVMWD) - Inland Empire Utilities Agency (IEUA) - Irvine Ranch Water District (IRWD) - Jurupa Community Services District (JCSD) - Orange County Water District (OCWD) - San Bernardino Valley Municipal Water District (Valley District) - San Gorgonio Pass Water Agency (SGPWA) - Santa Ana Watershed Project Authority (SAWPA) Task Force Administrator - Temescal Valley Water District (TVWD) - Western Riverside County Wastewater Authority (WRCWA) - Yucaipa Valley Water District (YVWD) TDS and nitrate ¹ objectives specified by the RWQCB in the 1975, 1984, and 1995 Basin Plans were developed using available groundwater data from the period 1968 through 1972. The initial estimates of AWQ were based on (non-volume-weighted) average concentrations in wells within each groundwater basin for that period. The Water Quality Objectives (WQOs) in the Basin Plan are for nitrate-nitrogen because there is a primary maximum contaminant level (MCL) in drinking water for nitrate (and not TIN or total nitrogen). Effluent limits are expressed as TIN because the RWQCB had concerns about how nitrogen species may change under different environmental conditions² and required a safety factor. Specifying TIN for effluent discharge limits is conservative. In Phase 2A (SAWPA Task Order 1998-W020-1616-03), the TIN/TDS Task Force revisited groundwater basin and sub-basin boundaries and the underlying dataset used to set objectives in order to determine if more rigorous methods could be employed that would yield more representative groundwater quality objectives. The TIN/TDS project team developed revised sub-basin boundaries based on a reassessment of hydrogeology and water quality to create GMZs for more effective environmental stewardship of groundwater. Historical AWQ for GMZs was based on a rigorous search for data for the 1954 to 1973 historical period; hence, the period for defining groundwater was increased from 5 years (1968 to 1972) to 20 years (1954 to 1973). The TIN/TDS Task Force developed a rigorous statistical method, along with geospatial tools, to estimate volume-weighted AWQ for the historical and current periods. These Nitrogen can be converted to various nitrogen chemical forms or species, based on environmental conditions, including oxidation reduction potential, pH, sorption sites, bacteria, etc. This phenomenon is known as the nitrogen cycle. Note that, by convention, this technical memorandum expresses nitrate in terms of nitrate as nitrogen. "Nitrate," "nitrate-N," "nitrate-nitrogen," and "NO₃-N" all refer to nitrate as nitrogen, with a maximum contaminant level (MCL) of 10 milligrams per liter (mg/L). In the context of the AWQ recomputation presented in this technical memorandum, ambient nitrate and TDS refer to concentrations that are representative of a given volume of groundwater for a given period. methodologies are described in detail in Section 2. According to the Basin Plan (RWQCB, 2016a): "TDS and nitrate-nitrogen WQOs for each management zone are based on historical concentrations of TDS and nitrate-nitrogen from 1954 through 1973 and are referred to herein as the 'antidegradation' objectives. This period brackets 1968, when the State Board adopted the state's antidegradation policy in Resolution No. 68-16, "Policy with Respect to Maintaining High Quality Waters". This Resolution establishes a benchmark for assessing and considering authorization of degradation of water quality." The Basin Plan requires a triennial update of AWQ; hence, in the initial TIN/TDS study, current ambient conditions were also estimated for the 1978 to 1997 period. Subsequent updates have been provided for the following periods: - 1984 to 2003 - 1987 to 2006 - 1990 to 2009 - 1993 to 2012 - 1996 to 2015 - 1999 to 2018 (this technical memorandum) The triennial AWQ determinations from each current period are used to assess compliance with the WQOs and to determine if assimilative capacity exists for each GMZ. By definition, assimilative capacity is determined to be the difference between the WQO and the current AWQ: if the current quality of the GMZ is better than the WQO, then assimilative capacity exists. Assimilative capacity does not exist if the current quality of a GMZ is the same as or poorer than the WQOs. According to the Basin Plan (RWQCB, 2016a), when a GMZ has little or no assimilative capacity: "The Regional Board addresses such situations by providing dischargers with the opportunity to participate in TDS offset programs, such as the use of desalters, in lieu of compliance with numerical TDS limits. These offset provisions are incorporated into waste discharge requirements . . . An alternative that dischargers might pursue in these circumstances is revision of the TDS or nitrogen objectives, through the Basin Plan amendment process. Consideration of less stringent objectives would necessitate comprehensive antidegradation review, including the demonstrations that beneficial uses would be protected and that water quality consistent with maximum benefit to the people of the State would be maintained . . . a number of dischargers have pursued this 'maximum benefit objective' approach, leading to the inclusion of 'maximum benefit' objectives and implementation strategies in this Basin Plan. Discharges to areas where the 'maximum benefit' objectives apply will be regulated in conformance with these implementation strategies." Implementation of certain projects and programs by specific dischargers as part of their maximum benefit demonstrations is required for the continued application of the "maximum benefit" objectives. ### 1.2 Contents of the Technical Memorandum Tables 1-1 (TDS) and 1-2 (nitrate) list the historical AWQ, the WQOs—both "antidegradation" and "maximum benefit"—and the 1978 to 1997 AWQ from the TIN/TDS Phase 2A study³. Section 2 outlines
the methodology used to develop water quality point statistics and average values for TDS and nitrate at wells. Section 3 presents the results of the AWQ determination, including an assessment of current assimilative capacity. Interpretative tools are used in Section 4 to distinguish between systemic and methodological factors that contribute to apparent changes in groundwater quality. Section 5 summarizes recommendations. ### 1.3 Electronic Deliverables The request for proposal (RFP) outlined a number of deliverables in addition to the text, tables, figures, and maps provided in this technical memorandum. Because of the file format, size, and search capabilities, these files are included electronically as links to a secure file transfer protocol (ftp) site. These files comprise Appendix A (Table 1-3). Once the final report is received by SAWPA, a link will be provided by SAWPA to obtain the report and its appendices. In the Prado Basin, surface water objectives (SWO) apply. This is because "Flood control operations at the dam, coupled with an extremely shallow groundwater table and an unusually thin aquifer, significantly affect these surface flows, as well as subsurface flows in the area. Depending on how the dam is operated, surface waters may or may not percolate behind the dam. There is little or no groundwater storage in the flood plain behind the dam. Any groundwater in storage is forced to the surface because the foot of Prado Dam extends to bedrock and subsurface flows cannot pass through the barrier created by the dam and the surrounding hills. Given these characteristics, this area is designated as a surface water management zone, rather than a groundwater management zone." (RWQCB, 2004) Table 1-1. TIN/TDS Phase 2A Results, Total Dissolved Solids (Page 1 of 2) | | Total Dissolved Solids Concentration (mg/L) | | | | | | | |--|---|------------------------------------|------------------------------|--------------------------|--|--|--| | Groundwater Management Zones | Water
Quality
Objective | Historical
Ambient ^a | 1997
Ambient ^b | Assimilative
Capacity | | | | | San Bernardino Valley and Yucaipa / Beaumont Pla | ains | | | | | | | | Beaumont, "maximum benefit" | 330 | 233 | 290 | 40 | | | | | Beaumont, "antidegradation" | 230 | 233 | 290 | | | | | | Bunker Hill-A | 310 | 313 | 350 | | | | | | Bunker Hill-B | 330 | 332 | 260 | 70 | | | | | Lytle | 260 | 264 | 240 | 20 | | | | | San Timoteo, "maximum benefit" | 400 | 303 | 300 | 100 | | | | | San Timoteo, "antidegradation" | 300 | 303 | 300 | | | | | | Yucaipa, "maximum benefit" | 370 | 319 | 330 | 40 | | | | | Yucaipa, "antidegradation" | 320 | 319 | 330 | | | | | | San Jacinto Basins | | | | | | | | | Canyon | 230 | 234 | 220 | 10 | | | | | Hemet-South | 730 | 732 | 1,030 | | | | | | Lakeview/Hemet North | 520 | 519 | 830 | | | | | | Menifee | 1,020 | 1,021 | 33,60 | | | | | | Perris-North | 570 | 569 | 750 | | | | | | Perris-South | 1,260 | 1,258 | 3,190 | | | | | | San Jacinto-Lower Pressure | 520 | 520 | 730 | | | | | | San Jacinto-Upper Pressure, "maximum benefit" | 500 | 321 | 370 | | | | | | San Jacinto-Upper Pressure, "antidegradation" | 320 | 321 | 370 | | | | | | Chino, Rialto / Colton, and Riverside Basins | | | | | | | | | Chino-North, "maximum benefit" | 420 | 260 | 300 | 120 | | | | | Chino-1, "antidegradation" | 280 | 280 | 310 | | | | | | Chino-2, "antidegradation" | 250 | 250 | 300 | | | | | | Chino-3, "antidegradation" | 260 | 260 | 280 | | | | | | Chino-East | 730 | 733 | 760 | | | | | | Chino-South | 680 | 676 | 720 | | | | | | Colton | 410 | 407 | 430 | | | | | ^aData sampling period was 20 years (1954-1973) for historical ambient water quality computations. ^bData sampling period was 20 years (1978-1997) for the 1997 ambient water quality computations. ^cFor the purposes of regulating discharges other than those associated with projects implemented within the Orange County GMZ to facilitate remediation projects and/or to address legacy contamination, no assimilative capacity is assumed to exist. mg/L = milligrams per liter ^{? =} Not enough data to estimate TDS concentrations; GMZ is presumed to have no assimilative capacity. If assimilative capacity is demonstrated by an existing or proposed discharger, that discharge would be regulated accordingly. Table 1-1. TIN/TDS Phase 2A Results, Total Dissolved Solids (Page 2 of 2) | | Total Dissolved Solids Concentration (mg/L) | | | | | | | |---|---|------------------------------------|------------------------------|--------------------------------|--|--|--| | Groundwater Management Zones | Water Quality
Objective | Historical
Ambient ^a | 1997
Ambient ^b | Assimilative
Capacity | | | | | Chino, Rialto / Colton, and Riverside Basins (con | rtinued) | | | | | | | | Cucamonga, "maximum benefit" | 380 | 212 | 260 | 120 | | | | | Cucamonga, "antidegradation" | 210 | 212 | 260 | | | | | | Rialto | 230 | 230 | 230 | | | | | | Riverside-A | 560 | 560 | 440 | 120 | | | | | Riverside-B | 290 | 289 | 320 | | | | | | Riverside-C | 290 | 289 | 320 | | | | | | Riverside-D | 680 | 684 | 760 | | | | | | Riverside-E | 810 | 812 | ? | | | | | | Riverside-F | 720 | 721 | 720 | | | | | | Prado Basin | Surface water objectives 4 apply | 618 | 819 | Surface water objectives apply | | | | | Elsinore / Temescal Valleys | | | | | | | | | Arlington | 980 | 983 | ? | | | | | | Bedford | ? | ? | ? | | | | | | Coldwater | 380 | 381 | 380 | | | | | | Elsinore | 480 | 476 | 480 | | | | | | Lee Lake | ? | ? | ? | | | | | | Temescal | 770 | 771 | 780 | | | | | | Warm Springs Valley | ? | ? | ? | | | | | | Orange County Basins | | | | | | | | | Irvine | 910 | 908 | 910 | | | | | | La Habra | ? | ? | ? | | | | | | Orange County ^c | 580 | 585 | 560 | | | | | | Santiago | ? | ? | 5 | | | | | ^aData sampling period was 20 years (1954-1973) for historical ambient water quality computations. ^bData sampling period was 20 years (1978-1997) for current ambient water quality computations. ^cFor the purposes of regulating discharges other than those associated with projects implemented within the Orange County GMZ to facilitate remediation projects and/or to address legacy contamination, no assimilative capacity is assumed to exist. mg/L = milligrams per liter ^{? =} Not enough data to estimate TDS concentrations; GMZ is presumed to have no assimilative capacity. If assimilative capacity is demonstrated by an existing or proposed discharger, that discharge would be regulated accordingly. Table 1-2. TIN/TDS Phase 2A Results, Nitrate (Page 1 of 2) | | Nitrate as Nitrogen Concentration (mg/L) | | | | | | | |---|--|------------------------------------|------------------------------|--------------------------|--|--|--| | Groundwater Management Zones | Water
Quality
Objective | Historical
Ambient ^a | 1997
Ambient ^b | Assimilative
Capacity | | | | | San Bernardino Valley and Yucaipa / Beaumont Pl | ains | | | | | | | | Beaumont, "maximum benefit" | 5.0 | 1.5 | 2.6 | 2.4 | | | | | Beaumont, "antidegradation" | 1.5 | 1.5 | 2.6 | | | | | | Bunker Hill-A | 2.7 | 2.7 | 4.5 | | | | | | Bunker Hill-B | 7.3 | 7.3 | 5.5 | 1.8 | | | | | Lytle | 1.5 | 1.5 | 2.8 | | | | | | San Timoteo, "maximum benefit" | 5.0 | 2.7 | 2.9 | 2.1 | | | | | San Timoteo, "antidegradation" | 2.7 | 2.7 | 2.9 | | | | | | Yucaipa, "maximum benefit" | 5.0 | 4.2 | 5.2 | | | | | | Yucaipa, "antidegradation" | 4.2 | 4.2 | 5.2 | | | | | | San Jacinto Basins | | | | | | | | | Canyon | 2.5 | 2.5 | 1.6 | 0.9 | | | | | Hemet-South | 4.1 | 4.1 | 5.2 | | | | | | Lakeview/Hemet North | 1.8 | 1.8 | 2.7 | | | | | | Menifee | 2.8 | 2.8 | 5.4 | | | | | | Perris-North | 5.2 | 5.2 | 4.7 | 0.5 | | | | | Perris-South | 2.5 | 2.5 | 4.9 | | | | | | San Jacinto-Lower Pressure | 1.0 | 1.0 | 1.9 | | | | | | San Jacinto-Upper Pressure, "maximum benefit" | 7.0 | 1.4 | 1.9 | 5.1 | | | | | San Jacinto-Upper Pressure, "antidegradation" | 1.4 | 1.4 | 1.9 | | | | | | Chino, Rialto / Colton, and Riverside Basins | | | | | | | | | Chino-North, "maximum benefit" | 5.0 | 3.7 | 7.4 | | | | | | Chino-1, "antidegradation" | 5.0 | 5.0 | 8.4 | | | | | | Chino-2, "antidegradation" | 2.9 | 2.9 | 7.2 | | | | | | Chino-3, "antidegradation" | 3.5 | | | | | | | | Chino-East | 10.0 | 13.3 | 29.1 | | | | | | Chino-South | 4.2 | 4.2 | 8.8 | | | | | | Colton | 2.7 | 2.7 | 2.9 | | | | | ^aData sampling period was 20 years (1954-1973) for historical ambient water quality computations. ^bData sampling period was 20 years (1978-1997) for current ambient water quality computations. ^cFor the purposes of regulating discharges other than those associated with projects implemented within the Orange County GMZ to facilitate remediation projects and/or to address legacy contamination, no assimilative capacity is assumed to exist. mg/L = milligrams per liter ^{? =} Not enough data to estimate TDS concentrations; GMZ is presumed to have no assimilative capacity. If assimilative capacity is demonstrated by an existing or proposed discharger, that discharge would be regulated accordingly. Table 1-2. TIN/TDS Phase 2A Results, Nitrate (Page 2 of 2) | | Nitrate : | as Nitrogen (| Concentratio | n (mg/L) | |---|--------------------------------|------------------------------------|------------------------------|--------------------------------| | Groundwater Management Zones | Water Quality
Objective | Historical
Ambient ^a | 1997
Ambient ^b | Assimilative
Capacity | | Chino, Rialto / Colton, and Riverside Basins (col | ntinued) | | | | | Cucamonga, "maximum benefit" | 5.0 | 2.4 | 4.4 | 0.6 | | Cucamonga, "antidegradation" | 2.4 | 2.4 | 4.4 | | | Rialto | 2.0 | 2.0 | 2.7 |
| | Riverside-A | 6.2 | 6.2 | 4.4 | 1.8 | | Riverside-B | 7.6 | 7.6 | 8.0 | | | Riverside-C | 8.3 | 8.3 | 15.5 | | | Riverside-D | 10.0 | 19.5 | ? | | | Riverside-E | 10.0 | 13.3 | 14.8 | | | Riverside-F | 9.5 | 12.1 | 9.5 | | | Prado Basin | Surface water objectives apply | 4.3 | 22.0 | Surface water objectives apply | | Elsinore / Temescal Valleys | | | | | | Arlington | 10.0 | 25.5 | ? | | | Bedford | ? | ? | ? | | | Coldwater | 1.5 | 1.5 | 2.6 | | | Elsinore | 1.0 | 1.0 | 2.6 | | | Lee Lake | ? | ? | ? | | | Temescal | 10.0 | 11.8 | 13.2 | | | Warm Springs Valley | , | ? | ? | | | Orange County Basins | | | | | | Irvine | 5.9 | 5.9 | 7.4 | | | La Habra | Ş | ? | ? | | | Orange County ^c | 3.4 | 3.4 | 3.4 | | | Santiago | Ş | ? | ? | | ^aData sampling period was 20 years (1954-1973) for historical ambient water quality computations. ^bData sampling period was 20 years (1978-1997) for current ambient water quality computations. ^cFor the purposes of regulating discharges other than those associated with projects implemented within the Orange County GMZ to facilitate remediation projects and/or to address legacy contamination, no assimilative capacity is assumed to exist. mg/L = milligrams per liter ^{? =} Not enough data to estimate TDS concentrations; GMZ is presumed to have no assimilative capacity. If assimilative capacity is demonstrated by an existing or proposed discharger, that discharge would be regulated accordingly. Table 1-3. Contents of Appendix A. | Year | Description | |---|--| | A.1 AWQ Database | MS Access database | | A.2 AWQ Summary Statistics Table | MS Excel workbook | | A.3 AWQ Geodatabase | ArcGIS Geodatabase | | | | | | | | A.4 Time-Series Plots for Groundwater Elevation, TDS, and Nitrate for Wells in the AWQ Database | Adobe Acrobat Portable Document Format (PDF) files | ### **SECTION 2** # Methods for the Recomputation of Ambient Water Quality Ambient water quality was calculated for the study period of January 1, 1999 to December 31, 2018. SAWPA provided an MS Access database containing the 2015 AWQ recomputation data, including groundwater well, water level, and groundwater quality information. With the exception of OCWD and CBWM, data for the current three year-period (2016 to 2018) were collected and uploaded to the SAWPA AWQ database. As requested by OCWD and CBWM, all of the data for those two agencies from the previous 2015 recomputation were replaced with a complete dataset from those two agencies. Following the data collection and quality control tasks, AWQ was recalculated for each GMZ in the watershed by developing water quality point statistics for TDS and nitrate, contouring, and estimating the regional volumeweighted TDS and nitrate concentrations in groundwater #### IN THIS SECTION Data Collection Process and Upload Historical Data Develop Water-Quality Point Statistics and Average Values for TDS and Nitrate at Wells Estimate Regional TDS and Nitrate in Groundwater Compute Current Ambient TDS and Nitrate for Groundwater Management Zones across the watershed. The following subsections describe the process of recomputing the AWQ for each GMZ during the 2018 current AWQ recomputation period. ### 2.1 Data Collection (Task 1a) On April 26, 2019, the RWQCB sent letters to SAWPA member agencies and sub-agencies requesting that "each agency that collects groundwater data in the watershed to provide groundwater level and groundwater quality data to the Task Force's consultants for the three-year period of January 1, 2016 to December 31, 2018." In addition to the letter, agencies were provided a template for data collection. Subsequent to the delivery of the RWQCB letter, the following agencies were contacted: - Beaumont Cherry Valley Water District - Chino Basin Watermaster - City of Corona - City of Riverside, (Riverside Public Utilities) - City of Banning - City of Beaumont - City of Colton - City of Loma Linda - City of Redlands - City of Rialto - Colton/San Bernardino Regional Tertiary Treatment and Water Reclamation Authority - County of Riverside, Department of Waste Resources - County of San Bernardino, Solid Waste Management Division - East Valley Water District - Eastern Municipal Water District - Elsinore Valley Municipal Water District - Home Gardens County Water District - Inland Empire Utilities Agency - Irvine Ranch Water District - Jurupa Community Services District - Muscoy Mutual Water Company - Orange County Water District - Santa Ana Regional Water Quality Control Board (GeoTracker and GAMA) - Riverside-Highland Water Company - Rubidoux Community Services District - San Bernardino Municipal Water Department - San Bernardino Valley Municipal Water District - San Gorgonio Pass Water Agency - South Mesa Water Company - Temescal Valley Water District - West Valley Water District - Western Heights Water Company - Western Municipal Water District - Western Riverside County Regional Wastewater Authority - Yucaipa Valley Water District. The data types and data fields that were collected are listed in Table 2-1. Table 2-1. Requisite Data Fields | Well | Information (for New Wells) | | | | | | | |---|---|--|--|--|--|--|--| | Well nameWell typeWell statusWell x coordinateWell y coordinate | Ground surface elevation Distance from reference point to ground surface Reference point type (e.g., top of casing) Depth of well casing Depth intervals of well perforations | | | | | | | | | Groundwater Level Data | | | | | | | | Well name Measurement date / time Depth from reference point to
the water table | Activity of well during measurement (e.g., static, pumping, recovering) Measurement method | | | | | | | | G | roundwater Quality Data | | | | | | | | Well nameSample date / timeAnalyte name | ResultDetection limitUnits | | | | | | | | | Analyte List | | | | | | | | Alkalinity, total (as CaCO₃) Bicarbonate Calcium Carbonate Chloride Electrical conductivity Fluoride Magnesium | Nitrate as nitrate (NO₃) or nitrate as nitrogen (N) pH Potassium Silica Sodium Sulfate Total dissolved solids | | | | | | | # 2.2 Process and Upload Historical Data (Task 1c) An inventory of all datasets was compiled for the data received from the various data providers. The inventory included data provider information such as contact, date received, number of records, and data format (e.g., Microsoft Access, Microsoft Excel, hardcopy), as well as a version number, which was assigned to track changes to datasets should issues arise during the data loading process and/or the statistical analysis. This living document was updated throughout the project. A data mapping document (also known as a "lookup table") was developed that translates the data providers' fields to the AWQ database fields. In addition to providing the necessary mapping, it also helped to locate missing requisite data, identify conflicting data types/sizes (e.g., text to numeric, floating point to decimal, text to numeric, text field size of 100 characters to 50 characters, etc.), and other information that may be pertinent to the migration. Each dataset was formatted and normalized for data migration. For example, data received in a crosstab format (e.g., columns indicate chemical information, rows indicate sample information) were processed using automation tools to reformat the data into the normalized table structure required in the AWQ database. Keypunched data were entered in a controlled tool that used data validation tools including drop downs, default values, data type constraints, data value constraints, and field size constraints. Conversions were completed on necessary reference values such as units and chemicals. Duplicate data were identified using analytical queries that filter on various parameters such as sample, date/time, and chemical name. Duplicates were flagged and reviewed to determine the appropriate course of action. In some cases, there were samples that appeared to be duplicates, but turned out to be re-analyses due to dilutions, laboratory errors, or requests from the data provider. Data were reviewed by project team members who did not participate in the processing outlined above. Keypunched data were carefully reviewed to ensure that no data entry errors occurred. Automated data processing was 10 percent randomly reviewed to ensure automation processes met the quality assurance/quality control (QA/QC) requirements. All errors were rectified before loading the data into the AWQ database. # 2.3 Develop Water-Quality Point Statistics and Average Values for TDS and Nitrate at Wells (Task 1d) Once the new data were uploaded to the AWQ database as described in Section 2.2 (Task 1c) a series of steps were executed to develop the point statistics and average water quality values that are the basis of the computation of ambient water quality. These steps include (1) review the time-series charts, (2) run the QA/QC checks, (3) annualize the water quality data, (4) use the Shapiro-Wilk test to remove potential outliers, and (5) compute averages and point
statistics. These steps were defined through the Task Force process in the late 1990s as documented in the Phase 2A technical memorandum (WEI, 2000). ### 2.3.1 Review Time-Series Data Once data were uploaded to the AWQ database, well location maps and time-series charts were generated for groundwater level, TDS, and nitrate for each well. The time-series charts were developed using automation tools, and PDF files were made for each of the wells with data in the database. Each PDF page contains time-series data for groundwater elevation, TDS, and nitrate. The time-series data were reviewed by staff hydrogeologists. These time-series charts are included electronically in Appendix A.7. # 2.3.2 QA/QC Tests Adapted from the Methods for the Examination of Water and Wastewater Four tests were conducted to evaluate the quality of data based on TDS, electrical conductivity (EC), and major ions. The tests were automated and applied to the data directly from the database to streamline the process. The computations were reviewed and tested to ensure that they worked properly. The test results were qualified and tied back to the primary (or unique) key. This allowed the test results to be related directly to the respective samples within the database. Any sample that failed all four tests was flagged and excluded from the dataset used for statistical analysis. The four data quality tests include: (1) an anion-cation balance; (2) a comparison of measured and calculated TDS; (3) a comparison of measured EC and the sum of ions; and (4) TDS to EC ratios. These tests are described in Standard Methods for the Examination of Water and Wastewater (Rice et al., 1992), and are summarized in the following subsections. #### 2.1.1.1 Anion-Cation Balance For this test, percent difference is calculated as follows: $$Percent \ Difference = 100 \times \left(\frac{\sum cations - \sum anions}{\sum cations + \sum anions} \right)$$ Equation (1) Acceptance criteria are as follow: - For an anion sum of 0 to 3 milliequivalents per liter (meq/L), an acceptable percent difference is ± 0.2 percent. - For an anion sum of 3 to 10 meg/L, an acceptable percent difference is ± 2 percent. - For an anion sum of 10 to 800 meg/L, an acceptable percent difference is ± 5 percent. ### 2.1.1.2 Measured vs. Calculated TDS The criteria for this test are expressed as follows: $$1.0 < \frac{Measured\ TDS}{Calculated\ TDS} < 1.2$$ Equation (2) where Calculated TDS = 0.6 (alkalinity) + Na + K + Ca + Cl + SO_4 + SiO_3 + NO_3 + F Na = Sodium K = Potassium Ca = Calcium Cl = Chloride SO₄ = Sulfate SiO₃ = Silicate NO_3 = Nitrate F = Fluoride #### 2.1.1.3 Measured EC and Cation Sums The criteria for this test are expressed as follows: $0.9 \times EC < 100 \times anion (or cation) sum < 1.1 \times EC$ Equation (3) #### **2.1.1.4 TDS to EC Ratios** The criteria for this test are expressed as follows: $$0.55 < \frac{Measured\ TDS}{FC} < 0.7$$ Equation (4) $$0.55 < \frac{Calculated\ TDS}{EC} < 0.7$$ Equation (5) ### 2.3.3 Define Analysis Period and Annualize the Data The water quality point statistic for a given well is based on a 20-year moving average. For this AWQ recomputation, the 20-year period is from January 1, 1999 to December 31, 2018. When there is more than one water quality sample result for each well in a given calendar year, these values are averaged. Thus, only one value per year – the annualized average – will be used in the computation of AWQ. This technique is a form of temporal declustering. A well may have a maximum of 20 annualized averages where data exist for each year of the recomputation period, but a well must have a minimum of three annualized average values to be eligible to have a point statistic computed. # 2.3.4 Shapiro-Wilk Test for Normality, Identification of Potential Outliers, and Development of Water Quality Point Statistics and Average Values The Shapiro-Wilk test for normality and outlier testing was recommended and adopted by the Nitrogen/TDS Task Force at the June 15, 1999 meeting. For this test, the mean, standard deviation, and the statistic W were calculated. The calculated W was compared with a critical W found in reference tables to determine if the population in the dataset is normally distributed. If the dataset is not normally distributed, then the most discordant value (MDV) is discarded and a new W is calculated: $$W = \frac{\left(\sum_{i=1}^{n} a_{i,n} \cdot x_{i}\right)^{2}}{\sum_{i=1}^{n} \left(x_{i} - x_{avg}\right)^{2}}$$ Equation (6) Where: $a_{i,n}$ = coefficient based on the order of the observation, i, and the number of observations, n (e.g., Gibbons, 1994) $x_i = i^{th}$ observation x_{avg} = mean of n observations The MDV can be defined three ways: (1) the residual between the point and the corresponding y-value on the linear regression line, (2) the difference between the point and the mean value of the dataset, and (3) the difference between the point and the median value. The third method of determining the MDV was used in this study. In past AWQ recomputation efforts, the Shapiro-Wilk test was used to find and remove MDVs or outliers in an iterative fashion. In some cases, more than half of the annualized average values were removed from the dataset. In the 2018 current AWQ recomputation, the Shapiro-Wilk test was employed, but with three enhancements: - Removal of outliers—MDVs—only occurred for values that were significantly greater than the median: 5 times (5x) for nitrate and 10x for TDS. This captures the original intent of the outlier test, which was to identify decimal placement errors or nitrate/nitrate as N conversion errors⁵. - Up to two MDVs, but not more, could be removed from a given dataset. - If there is no MDV, but the dataset fails the Shapiro-Wilk test, or if two MDVs were removed and a third potential MDV is identified, then the dataset is log transformed and undergoes the Shapiro-Wilk test on the log-transformed data. A data transformation is the application of a mathematical function to every data point to meet an inference about the sample population. In this case, the assumption is that the data are logarithmically distributed and are transformed by taking the base-10 logarithm of each data point. The inverse logarithm is simply 10x, where x is the number undergoing inverse logarithmic transformation. Figure 2-1 is a flow chart that depicts the outlier identification in this AWQ recomputation through the following steps: The conversion of nitrate units to nitrogen units is based on ratio of their molecular weights: MW_{NO3} / $MW_N = ((14.0067 + 3*16) / (14.0067)) = 4.427$ MDV = Most discordant value from median SE = Standard error at student's t GM = Geometric mean GSE = Geometric standard error UCL84 = 84% upper confidence limit of mean For an explanation of the numbered steps, please refer to the text (Section 2.3.4). Figure 2-1. Flow Chart for Outlier Identification and Computation of Point Statistics and Averages - 1. The dataset is tested to determine if there are less than three annualized average values or there are no detected values. - 2. If there are less than three annualized average values or there are no detected values, then the dataset for that well is not eligible to have a point statistic computed and a mean value is computed instead (as discussed in Section 4, point statistics are given preferences over mean values in drawing contour maps). - 3. If there are three or more annualized average values, then the Shapiro-Wilk test is performed on the dataset. - 4. If the dataset passes the Shapiro-Wilk test, then a point statistic is computed. The water quality point statistic is operationally defined as mean plus t times the standard error of the mean at an upper confidence level (UCL) of 0.84. - 5. If the dataset fails the Shapiro-Wilk test, then the dataset is tested to see if the MDV is significantly greater than the median (5x for nitrate and 10x for TDS). - a. If the MDV is significantly greater than the median, then the dataset moves to Step 6. - b. If the MDV is not significantly greater than the median, then the dataset moves to Step 9. - 6. If the MDV is significantly greater than the median, the dataset is checked to see if the previous MDV had been removed. - a. Only a total of two MDVs can be removed. If there are fewer than two MDVs removed, then the dataset moves to Step 7. - b. If two MDVs have been removed, then dataset moves to Step 9. - 7. The current MDV is removed. - 8. At this point, the dataset is retested beginning at Step 1. - 9. The dataset is log transformed and the Shapiro-Wilk test is performed on the log-transformed dataset. - 10. If the log-transformed dataset passes the Shapiro-Wilk test, then the geometric mean (GM) and the geometric standard error of the mean (GSE) are computed. A statistic, GM plus t times the GSE at an upper confidence level (UCL) of 0.84 is computed. Then the geometric statistic is inverse log transformed. - 11. If the log-transformed dataset does not pass the Shapiro-Wilk test, then the geometric median is calculated, and then inverse log transformed. Appendix A.2 contains an MS Excel file that summarizes all of the point statistics and averages that were computed in Task 1d. As stated in the RFP, "The Consultant will prepare tables that will describe (i) the results of the tests for normality, outliers, and data quality and (ii) the statistics by well for TDS and nitrate-nitrogen of the mean, standard deviation, standard error of the mean, and mean plus t times the standard error of the mean." ### 2.4 Estimate Regional TDS and Nitrate in Groundwater (Task 1e) The objective of this task is to prepare groundwater level and groundwater quality contour maps for all GMZs in the watershed. In strict accordance with procedures established by the Task Force, the steps described herein will be used to estimate regional nitrate and salinity (i.e., TDS) in groundwater. For each GMZ (and for each GMZ with a multi-layer
system), the following maps were produced (Appendix B): - Groundwater level contours: 2018 data - Nitrate (as N): current ambient (1999 to 2018) - TDS: current ambient (1999 to 2018) ### 2.4.1 Water Quality Point Statistics and Average Values As shown in Figure 2-1 and discussed in Section 2.3.4, the values that were computed to contour water quality are termed "water quality point statistic" and "average values." If a water quality point statistic could be computed, then these values were preferentially used in the generation of water quality maps and the development of water quality contours. If a water quality point statistic could not be computed, then the mean value (for a normal distribution) or inverse log-transformed median value were plotted but were given less weight in contouring. - Water quality point statistic - o The water quality point statistic, which is operationally defined as the mean plus t times the standard error of the mean at an upper confidence level (UCL) of 0.84. - o The geometric point statistic, which is operationally defined as the geometric mean plus t times geometric standard error of the mean at an upper confidence level (UCL) of 0.84. - Average values - o The mean value for normally distributed data sets. - o The inverse log-transformed median value log normally distributed data sets. Table 2-2 summarizes analytics for each of the GMZs in the watershed, including the area of each GMZ (in square miles and acres), the volume of groundwater in storage (acre-feet [AF]) for the study period, the number of wells sampled and analyzed for TDS and nitrate, the number of wells for which point statistics could be computed, the percentage of wells with point statistics, and the TDS and nitrate well density. Note for example that the Arlington and some of the Riverside GMZs have relatively low water quality well densities, while the Riverside-A and Orange County (OC) GMZs have densities that are close to or greater than six wells per square mile. The relatively high water quality well density in Chino East is largely due to the monitoring program for the Stringfellow National Priorities List (NPL) site. Table 2-2. Groundwater Management Zone Analytics (Page 1 of 2) | | Are | ea | | | Total Dissolved Solids | | | | | Nitrate | | | | |---|-----------------|---------|-----------------------|------------------------|---------------------------|--|--|------------------------|---------------------------|--|--|--|--| | Groundwater Management Zone | Square
Miles | Acres | Volume
(acre feet) | Total Wells
Sampled | Total Point
Statistics | Percentage
of Wells with
Point
Statistics | Well Density
(wells per
square mile) | Total Wells
Sampled | Total Point
Statistics | Percentage
of Wells with
Point
Statistics | Well Density
(wells per
square mile) | | | | San Bernardino Valley and Yucaipa / Beaumont Plains | | | | | | | | | | | | | | | Beaumont | 43 | 27,200 | 1,200,100 | 99 | 59 | 60% | 2.3 | 97 | 66 | 68% | 2.3 | | | | Bunker Hill-A | 42 | 27,100 | 1,000,000 | 109 | 85 | 78% | 32.6 | 105 | 85 | 81% | 2.5 | | | | Bunker Hill-B | 70 | 44,600 | 2,100,500 | 146 | 105 | 72% | 2.1 | 136 | 99 | 73% | 1.9 | | | | Lytle | 11 | 6,850 | 400,000 | 38 | 27 | 71% | 3.5 | 38 | 35 | 92% | 3.5 | | | | San Timoteo | 28 | 18,100 | 669,000 | 34 | 25 | 74% | 1.2 | 34 | 21 | 62% | 1.2 | | | | Yucaipa | 40 | 25,500 | 684,000 | 114 | 72 | 63% | 2.9 | 117 | 78 | 67% | 2.9 | | | | San Jacinto Basins | | | | | | | | | | | | | | | Canyon | 7 | 4,390 | 99,800 | 27 | 24 | 89% | 3.9 | 27 | 19 | 70% | 3.9 | | | | Hemet-South | 39 | 25,200 | 450,000 | 58 | 41 | 71% | 1.5 | 58 | 41 | 71% | 1.5 | | | | Lakeview/Hemet North | 27 | 17,500 | 545,000 | 88 | 66 | 75% | 3.3 | 88 | 54 | 61% | 3.3 | | | | Menifee | 9 | 5,630 | 107,000 | 22 | 19 | 86% | 2.4 | 22 | 16 | 73% | 2.4 | | | | Perris-North | 59 | 38,000 | 453,000 | 42 | 33 | 79% | 0.7 | 42 | 28 | 67% | 0.7 | | | | Perris-South | 39 | 25,200 | 757,000 | 67 | 54 | 81% | 1.7 | 67 | 52 | 78% | 1.7 | | | | San Jacinto-Lower Pressure | 21 | 13,500 | 525,000 | 17 | 12 | 71% | 0.8 | 17 | 3 | 18% | 0.8 | | | | San Jacinto-Upper Pressure | 33 | 20,900 | 1,038,400 | 111 | 81 | 73% | 3.4 | 111 | 35 | 32% | 3.4 | | | | Chino, Rialto / Colton, and Riverside Basins | | | | | | | | | | | | | | | Chino-North | 189 | 121,000 | 5,904,000 | 482 | 444 | 92% | 2.6 | 975 | 480 | 49% | 5.2 | | | | Chino-1/Chino North | 62 | 39,500 | 2,104,500 | 179 | 102 | 57% | 2.9 | 236 | 129 | 55% | 3.8 | | | | Chino-2/Chino North | 68 | 43,400 | 2,516,000 | 194 | 107 | 55% | 2.9 | 204 | 107 | 52% | 3.0 | | | | Chino-3/Chino North | 60 | 38,500 | 1,283,500 | 109 | 78 | 72% | 1.8 | 133 | 113 | 85% | 2.2 | | | | Chino-East | 12 | 7,950 | 77,000 | 207 | 33 | 16% | 17.3 | 493 | 273 | 55% | 41.1 | | | | Chino-South | 21 | 13,100 | 187,000 | 59 | 23 | 39% | 2.8 | 109 | 49 | 45% | 5.2 | | | | Colton | 10 | 6,080 | 169,000 | 10 | 9 | 90% | 1.0 | 10 | 8 | 80% | 1.0 | | | | Cucamonga | 25 | 15,900 | 76,900 | 28 | 26 | 93% | 1.1 | 28 | 23 | 82% | 1.1 | | | | Rialto | 28 | 17,600 | 980,700 | 91 | 58 | 64% | 3.3 | 105 | 58 | 55% | 3.8 | | | | Riverside-A | 15 | 9,350 | 181,000 | 77 | 43 | 56% | 5.1 | 71 | 42 | 59% | 4.7 | | | | Riverside-B | 11 | 6,710 | 180,700 | 27 | 10 | 37% | 2.5 | 48 | 23 | 48% | 4.4 | | | | Riverside-C | 3 | 1,990 | 14,600 | 1 | 0 | 0% | 0.3 | 4 | 3 | 75% | 1.3 | | | | Riverside-D | 14 | 8,640 | ? | 1 | 1 | 100% | 0.1 | 9 | 7 | 78% | 0.6 | | | | Riverside-E | 11 | 7,320 | 171,900 | 8 | 5 | 63% | 0.7 | 9 | 4 | 44% | 0.8 | | | | Riverside-F | 10 | 6,070 | 127,400 | 27 | 22 | 81% | 2.7 | 28 | 19 | 68% | 2.8 | | | | Prado Basin | 17 | 10,700 | ? | 40 | 22 | 55% | 2.4 | 40 | 22 | 55% | 2.4 | | | | Elsinore / Temescal Valleys | | | | | | | | | | | | | | | Arlington | 21 | 13,700 | 58,100 | 19 | 6 | 32% | 0.9 | 32 | 19 | 59% | 1.5 | | | | Bedford | 8 | 5,030 | ? | 6 | 4 | 67% | 0.8 | 6 | 4 | 67% | 0.8 | | | | Coldwater | 3 | 1,770 | 37,600 | 8 | 6 | 75% | 2.7 | 9 | 6 | 67% | 3.0 | | | | Elsinore | 23 | 15,000 | 537,900 | 16 | 12 | 75% | 0.7 | 16 | 10 | 63% | 0.7 | | | | Lee Lake | 7 | 4,720 | ? | 7 | 6 | 86% | 1.0 | 7 | 6 | 86% | 1.0 | | | | Temescal | 28 | 18,000 | 384,300 | 45 | 36 | 80% | 1.6 | 46 | 38 | 83% | 1.6 | | | | Warm Springs Valley | 6 | 3,720 | ? | 1 | 0 | 0% | 0.2 | 1 | 0 | 0% | 0.2 | | | Table 2-2: Groundwater Management Zone Analytics (Page 2 of 2) | | Area | | | Total Dissolved Solids | | | | Nitrate | | | | |-----------------------------|-----------------|---------|-----------------------|------------------------|---------------------------|--|--|------------------------|---------------------------|--|--| | Groundwater Management Zone | Square
Miles | Acres | Volume
(acre feet) | Total Wells
Sampled | Total Point
Statistics | Percentage
of Wells with
Point
Statistics | Well Density
(wells per
square mile) | Total Wells
Sampled | Total Point
Statistics | Percentage
of Wells with
Point
Statistics | Well Density
(wells per
square mile) | | Orange County Basins | | | | | | | | | | | | | Irvine | 84 | 53,900 | 1,800,800 | 119 | 101 | 85% | 1.4 | 120 | 68 | 57% | 1.4 | | La Habra | 17 | 10,800 | ? | 1 | 1 | 100% | 0.1 | 1 | 0 | 0% | 0.1 | | Orange County | 255 | 163,000 | 23,900,400 | 1,710 | 1,320 | 77% | 6.7 | 1,677 | 845 | 50% | 6.6 | | Santiago | 8 | 5,100 | ? | 3 | 3 | 100% | 0.4 | 3 | 3 | 100% | 0.4 | [?] Not enough data to estimate volume The locations of wells for which point statistics and averages were determined are shown on Figures 2-2 and 2-3 for TDS and nitrate, respectively. Wells depicted by a square had the requisite data, passed the QA/QC steps and had a point statistic computed. Locations where only the mean or geometric median values could be computed are depicted with circles. Note that, at the request of CBWM, the locations of the private wells for which point statistics and averages were determined and that were ultimately used to compute AWQ values are not shown in these figures. ### 2.4.2 Develop and Digitize Water Quality and Water Level Contours The following information was used to prepare groundwater quality and groundwater elevation contour maps: (1) the computed statistics at wells, (2) the aquifer layer for the following GMZs: Chino-North, Orange County, Irvine, and Bunker Hill-A Pressure Zone and Bunker Hill-B Pressure Zone, (3) groundwater elevation measurements, and (4) contours from previous recomputation efforts. Some GMZs have multiple aquifer units. For those GMZs, information from the AWQ database or well construction data were used to identify which aquifer units a given well is screened against. Separate maps were prepared for these multi-aquifer GMZs. Water quality and water level contours were hand-drawn by staff experienced in the hydrogeologic sciences. All groundwater level and groundwater quality contour maps were reviewed by a California certified hydrogeologist. A review of previous recomputation contours was incorporated into the contouring process to minimize subjective bias during the current contouring effort, which is especially important in areas where little data exist. Each contour was digitized and transformed into a geographic information system (GIS) shapefile. Agency representatives were invited to review the water level and water quality contour maps; the consultants worked closely with Task Force members to perform an accurate and complete analysis of the groundwater quality within their agency's respective GMZs. ## 2.5 Compute
Current Ambient TDS and Nitrate for Groundwater **Management Zones (Task 1f)** GIS tools were used to compute the volume-weighted estimates of AWQ for the GMZs. In Task 1e, the water quality point statistics for both TDS and nitrate, as well as water levels, were contoured and reviewed by the Task Force members. The finalized contours and points were interpolated using kriging techniques in which the surrounding measured values are weighted to derive a predicted value for an unmeasured location to create a raster grid. The kriging interpolation method used is identical to prior AWQ determinations. The raster files went through a thorough QA/QC process. A geoprocessing model in ArcGIS was used to automate the process of extracting the values from the TDS, nitrate, and groundwater elevation raster files to the SAWPA-supplied AWQ grid shapefile. Specific yield, and bottom of aquifer, and layers in multilayer GMZs were already included in the grid shapefile. The volume of groundwater for a single-layer aguifer system is simply the difference between groundwater elevation and the bottom of the aquifer, accounting for area and specific yield and summing for all grid cells or portions of grid cells in the GMZ, as follows: $$V = \sum_{i=1}^{n} A_{i} \cdot (GWE_{i} - BOA_{i}) \cdot SY_{i}$$ Equation (7) where V = volume of groundwater in the GMZ A_i = area of the ith grid cell GWE_i = groundwater elevation (feet above mean sea level [feet msl]) BOA_i = bottom of the aquifer of the ith grid cell (feet msl) SY = specific yield of the ith grid cell n = number of grid cells The geoprocessing model links together sequences of geoprocessing tools, feeding the output of one tool into another tool as input to produce the desired outcome. The model documents and streamlines the process and enables efficient replication for populating the AWQ grid. The AWQ grid was exported to a Microsoft Excel spreadsheet, where the following steps were executed to compute the volume-weighted estimates of ambient TDS and nitrate for the 2015 current AWQ recomputation period: - 1. Overlay the SAWPA-provided 400-meter x 400-meter grid on each GMZ. - 2. Compute volume of groundwater in storage in each grid cell. - 3. Compute volume of groundwater in storage in each layer of multi-layer aquifers (Chino North, Orange County, and Bunker Hill Pressure Zone). - 4. Compute volume of groundwater in each GMZ. - 5. Estimate the value of the water quality statistics for each grid cell. - 6. Compute volume-weighted estimate of TDS and nitrate for each aquifer in each GMZ, as follows: $$C_{avg} = \frac{\sum_{i=1}^{n} C_i \cdot V_i}{\sum_{i=1}^{n} V_i}$$ (8) where C_{avg} = the volume-weighted current ambient concentration in a GMZ C_i = the current ambient concentration of groundwater in the ith grid cell V_i = the volume of groundwater in the ith grid cell n = number of grid cells #### **SECTION 3** # Ambient Water Quality Results for the 2018 Recomputation This section presents the results of the AWQ recomputation for the current period (1999 to 2018) determination, including an assessment of current assimilative capacity. The Basin Plan requires that the AWQ be computed every three years. The triennial AWQ determinations from each current period are used to assess compliance with the WQOs and to determine if assimilative capacity exists for each GMZ. By definition, assimilative capacity is determined to be the difference between the WQO and the current AWQ: if the current quality of the GMZ is better than the WQO, then assimilative capacity exists. Assimilative capacity does not exist if the current quality of a GMZ is the same as or poorer than the WQOs. #### IN THIS SECTION 2018 Current Ambient TDS and Nitrate Concentrations for GMZs Assimilative Capacity Determination # 3.1 2018 Current Ambient TDS and Nitrate Concentrations for **Groundwater Management Zones** As described in Section 2.5, a combination of steps using analytical tools (GIS and MS Excel) was employed to compute the volume-weighted estimates of AWQ for the GMZs: - 1. Water quality point statistics (and averages) for both TDS and nitrate, as well as water levels, were mapped, contoured, and reviewed by the Task Force members. The previous period's contours were used as a starting point for developing new water level and water quality contours. - 2. The finalized contours and points were interpolated using kriging techniques. - 3. A geoprocessing model in ArcGIS was used to automate the process of extracting the values from the TDS, nitrate, and groundwater elevation raster files to the SAWPA-supplied AWQ grid shapefile. Specific yield, bottom of aquifer, and layers in multilayer GMZs were already included in the grid shapefile. - 4. The 400-meter x 400-meter grid was overlaid on each GMZ. - 5. The volume of groundwater in storage in each grid cell was computed. - 6. The volume of groundwater in storage in each layer of multi-layer aquifers (Chino North, Orange County, and Bunker Hill Pressure Zone) was computed. - 7. The volume of groundwater in each GMZ was computed (this is the summation of water in storage for each of the grid cells or partial grid cells comprising the GMZ). - 8. Water quality for each grid cell was assigned based on the kriging results. - 9. The volume-weighted estimate of TDS and nitrate concentrations for each aquifer in each GMZ was computed by dividing the total mass of TDS or nitrate in each GMZ by the total volume of water in storage in each GMZ. In Step 5, the groundwater storage in each grid cell was computed from the groundwater elevation, bottom of the aquifer, and specific yield. Figure 3-1 shows the thickness of the aquifer, by grid cell, for all of the GMZs. For multi-layered GMZs, the thickness shown is the total of all layers. Figure 3-2 displays the specific yield, by grid cell, for all of the GMZs. For multi-layered GMZs, only specific yield values for Layer 1 are shown on the map (specific yield values for each layer in a multi-layer system were used in the computation). Figure 3-3 shows the amount of groundwater in storage, which is the product of saturated volume and specific yield. Values of groundwater storage range from less than 1 AF per grid cell to more than 20,000 AF. The highest storage values occur in the OC GMZ forebay area, where the saturated thickness is greater and where specific yield values are estimated by OCWD's model to be greater than 25 percent. Computed ambient water quality data—TDS and nitrate—are shown in Tables 3-1 and 3-2. Figures 3-4, 3-5, and 3-6 provide maps that analyze the TDS AWQ findings for the 2018 current AWQ recomputation period. Figure 3-4 shows that the highest concentrations of TDS are along the coast in the OC GMZ, where there has been historical and ongoing seawater intrusion (Alamitos, Bolsa, and Talbert Gaps), in the Irvine GMZ, and in the Perris South and Menifee GMZs. Figure 3-5 shows the mass (in tons of salt) in each grid cell. The TDS mass per grid cell is highest in the OC GMZ—forebay area and seawater intrusion zones and in Perris South GMZ. The high mass per grid cell in the OC GMZ forebay area reflects the high volume of groundwater storage in that area. Figure 3-6 is a map that depicts the changes in TDS concentration in groundwater between the 2015 and 2018 recomputation periods from two distinct perspectives. The grid cells on the map grade from red (1,000 mg/L increase in TDS concentration) to green (1,000 mg/L decrease in TDS concentration). Most of the grid cells in the GMZs are light yellow to light peach, indicating that there is either no change or a small increase in TDS over that period. A reduction in computed TDS concentrations has occurred in the vicinity of the boundary between Perris North and Perris South GMZs due to the method used to draw the TDS contours. Contours in previous recomputations were extended between the two GMZs, increasing the TDS in the Perris-North GMZ. The map also shows the 20-year trend in TDS concentration in the key wells using the Mann-Kendall trend analysis. For consistency, key wells identified in WEI (2014) were used in this study. This trend analysis is discussed in more detail in Section 4.3.2. Figures 3-7, 3-8, and 3-9 are a parallel series of maps that analyze the nitrate AWQ findings for the current period. High concentrations of nitrate occur in portions of several GMZs: Irvine, Temescal, Arlington, Chino North, Chino South, Chino East, Riverside, and San Jacinto GMZs. Figure 3-8 shows the mass (in tons of nitrate) in each grid cell. The nitrate mass per grid cell is highest in the OC GMZ forebay area and in the southern portion of Chino North, Chino South, and Chino East GMZs. The high mass per grid cell in the forebay area reflects the high volume of groundwater storage in that area. Figure 3-9 depicts the changes in nitrate concentrations in groundwater between the 2015 and 2018 analyses from two distinct perspectives. The grid cells on the map grade from red (10 mg/L increase in nitrate concentrations) to green (10 mg/L decrease in nitrate concentrations). Most of the grid cells in the GMZs are light yellow to light peach, indicating that there is no change to a small increase in nitrate over that period. There are areas where nitrate concentrations are also decreasing. The map also shows the trends in nitrate concentration in the key wells using the Mann-Kendall trend analysis. This trend analysis is discussed in more detail in Section 4.3.2. # 3.2 Assimilative Capacity Determination The triennial AWQ determinations from each current period are used to assess compliance with the WQOs and to determine if assimilative capacity exists for each GMZ. By definition, assimilative capacity is determined to be the difference between the objective and the current AWQ: if the current quality of the GMZ is better than the water quality objective, then assimilative capacity exists. Assimilative capacity does not exist if the current quality of a GMZ
is the same as or poorer than the WQOs. Allocation of assimilative capacity, or some portion of assimilative capacity, by permitting discharges containing TDS and/or nitrate at concentrations higher than their objectives is at the discretion of the RWQCB. Certain stakeholders have petitioned the RWQCB to raise the objective of their GMZ based on a demonstration of maximum benefit to the people of the state of California. The GMZs with "maximum benefit" WQOs are Chino-North, Cucamonga, Yucaipa, San Timoteo, Beaumont, and San Jacinto-Upper Pressure. In those GMZs, both the antidegradation and maximum benefit objectives are shown in Tables 3-1 and 3-2. GMZs that have assimilative capacity have positive values in the last column of the tables. GMZs with negative values in the assimilative capacity column of Tables 3-1 and 3-2 have no assimilative capacity; the magnitude of the negative value is simply the difference between current ambient and the WQO and is an indication of how close the GMZ is to the meeting groundwater quality objectives. Assimilative capacities for TDS and nitrate are shown in Figures 3-10 and 3-11. Table 3-1. TDS Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity (Page 1 of 2) | | | Total Dissolved Solids Concentration (mg/L) | | | | | | | | | | | | |--|-------------------------------|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------------------|--------------------------|--|--| | Groundwater Management Zones | Water
Quality
Objective | Historical
Ambient ¹ | 1997
Ambient | 2003
Ambient | 2006
Ambient | 2009
Ambient | 2012
Ambient | 2015
Ambient | 2018
Ambient | Difference
from 2015 to
2018 | Assimilative
Capacity | | | | San Bernardino Valley and Yucaipa / Beaumont Plain | ıs | | | | | | | | | | | | | | Beaumont, "maximum benefit" | 330 | 233 | 290 | 260 | 260 | 280 | 290 | 290 | 280 | -10 | 50 | | | | Beaumont, "antidegradation" | 230 | 233 | 290 | 260 | 260 | 280 | 290 | 290 | 280 | -10 | None (-50) | | | | Bunker Hill-A | 310 | 313 | 350 | 320 | 330 | 340 | 340 | 330 | 330 | 0 | None (-20) | | | | Bunker Hill-B | 330 | 332 | 260 | 280 | 280 | 270 | 280 | 290 | 280 | -10 | 50 | | | | Lytle | 260 | 264 | 240 | 230 | 230 | 240 | 240 | 240 | 240 | 0 | 20 | | | | San Timoteo, "maximum benefit" | 400 | 303 | 300 | Ş | ? | 420 | 410 | 420 | 420 | 0 | None (-20) | | | | San Timoteo, "antidegradation" | 300 | 303 | 300 | ? | ? | 420 | 410 | 420 | 420 | 0 | None (-120) | | | | Yucaipa, "maximum benefit" | 370 | 319 | 330 | 310 | 310 | 320 | 320 | 320 | 320 | 0 | 50 | | | | Yucaipa, "antidegradation" | 320 | 319 | 330 | 310 | 310 | 320 | 320 | 320 | 320 | 0 | 0 | | | | San Jacinto Basins | | | | | | | | | | | | | | | Canyon | 230 | 234 | 220 | 420 | 370 | 420 | 340 | 380 | 370 | -10 | None (-140) | | | | Hemet-South | 730 | 732 | 1030 | 850 | 920 | 910 | 940 | 920 | 940 | 20 | None (-210) | | | | Lakeview/Hemet North | 520 | 519 | 830 | 840 | 880 | 890 | 860 | 850 | 850 | 0 | None (-330) | | | | Menifee | 1020 | 1021 | 3360 | 2220 | 2140 | 2050 | 2030 | 1970 | 1960 | -10 | None (-940) | | | | Perris-North | 570 | 568 | 750 | 780 | 730 | 770 | 760 | 720 | 730 | 10 | None (-160) | | | | Perris-South | 1260 | 1258 | 3190 | 2200 | 2600 | 2470 | 2400 | 2340 | 2300 | -40 | None (-1040) | | | | San Jacinto-Lower Pressure | 520 | 520 | 730 | 950 | 810 | 800 | 800 | 780 | 760 | -20 | None (-240) | | | | San Jacinto-Upper Pressure, "maximum benefit" | 500 | 321 | 370 | 370 | 350 | 350 | 350 | 370 | 350 | -20 | 150 | | | | San Jacinto-Upper Pressure, "antidegradation" | 320 | 321 | 370 | 370 | 350 | 350 | 350 | 370 | 350 | -20 | None (-30) | | | | Chino, Rialto / Colton, and Riverside Basins | ' | | | | | | ' | | ' | ' | , | | | | Chino-North, "maximum benefit" | 420 | 260 | 300 | 320 | 340 | 340 | 350 | 360 | 350 | -10 | 70 | | | | Chino-1, "antidegradation" | 280 | 280 | 310 | 330 | 340 | 340 | 350 | 350 | 340 | -10 | None (-60) | | | | Chino-2, "antidegradation" | 250 | 250 | 300 | 340 | 360 | 360 | 380 | 380 | 380 | 0 | None (-130) | | | | Chino-3, "antidegradation" | 260 | 260 | 280 | 280 | 310 | 320 | 320 | 320 | 320 | 0 | None (-60) | | | | Chino-East | 730 | 733 | 760 | 620 | 650 | 770 | 770 | 840 | 840 | 0 | None (-110) | | | | Chino-South | 680 | 676 | 720 | 790 | 940 | 980 | 990 | 940 | 920 | -20 | None (-240) | | | | Colton | 410 | 407 | 430 | 430 | 450 | 430 | 440 | 480 | 490 | 10 | None (-80) | | | | Cucamonga, "maximum benefit" | 380 | 212 | 260 | 250 | 250 | 250 | 260 | 260 | 260 | 0 | 120 | | | | Cucamonga, "antidegradation" | 210 | 212 | 260 | 250 | 250 | 250 | 260 | 260 | 260 | 0 | None (-50) | | | | Rialto | 230 | 230 | 230 | 220 | 230 | 230 | 230 | 240 | 240 | 0 | None (-10) | | | | Riverside-A | 560 | 560 | 440 | 440 | 440 | 430 | 420 | 440 | 430 | -10 | 130 | | | | Riverside-B | 290 | 289 | 320 | 310 | 340 | 340 | 340 | 360 | 340 | -20 | None (-50) | | | | Riverside-C | 680 | 684 | 760 | 750 | 740 | 740 | 730 | ? | ? | ? | ? | | | | Riverside-D | 810 | 812 | ? | ? | ? | ? | ? | ? | ? | ? | ? | | | | Riverside-E | 720 | 721 | 720 | 700 | 710 | 700 | 740 | 730 | 740 | 10 | None (-20) | | | | Riverside-F | 660 | 665 | 580 | 570 | 570 | 570 | 560 | 560 | 550 | -10 | 110 | | | | Prado Basin | SWO applies | 618 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | Table 3-1. TDS Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity (Page 2 of 2) | | | Total Dissolved Solids Concentration (mg/L) | | | | | | | | | | | | |------------------------------|-------------------------------|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------------------|--------------------------|--|--| | Groundwater Management Zones | Water
Quality
Objective | Historical
Ambient ¹ | 1997
Ambient | 2003
Ambient | 2006
Ambient | 2009
Ambient | 2012
Ambient | 2015
Ambient | 2018
Ambient | Difference
from 2015 to
2018 | Assimilative
Capacity | | | | Elsinore / Temescal Valleys | | | | | | | | | | | | | | | Arlington | 980 | 983 | ? | 1020 | 960 | 1020 | 1030 | 1020 | 1020 | 0 | None (-40) | | | | Bedford | ? | ? | ? | 740 | ? | ? | ? | ? | ? | ? | ? | | | | Coldwater | 380 | 381 | 380 | 400 | 420 | 440 | 440 | 460 | 450 | -10 | None (-70) | | | | Elsinore | 480 | 476 | 480 | 460 | 470 | 470 | 490 | 490 | 490 | 0 | None (-10) | | | | Lee Lake | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | | | | Temescal | 770 | 771 | 780 | 700 | 780 | 790 | 790 | 810 | 810 | 0 | None (-40) | | | | Warm Springs Valley | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | | | | Orange County Basins | | | | | | | | | | | | | | | Irvine | 910 | 908 | 910 | 880 | 920 | 910 | 940 | 920 | 880 | -40 | 30 | | | | La Habra | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | | | | Orange County | 580 | 585 | 560 | 560 | 590 | 600 | 610 | 600 | 600 | 0 | None (-20) | | | | Santiago | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | | | ^{? -} Not enough data to estimate TDS concentrations 1Data sampling period for all ambient water quality computations was 20 years Table 3-2. Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity (Page 1 of 2) | | Nitrate Concentration (mg/L) | | | | | | | | | | | | |---|-------------------------------|------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------------------|--------------------------|--| | Groundwater Management Zones | Water
Quality
Objective | Historical
Ambient ¹ | 1997
Ambient | 2003
Ambient | 2006
Ambient | 2009
Ambient | 2012
Ambient | 2015
Ambient | 2018
Ambient | Difference
from 2015 to
2018 | Assimilative
Capacity | | | San Bernardino Valley and Yucaipa / Beaumont Plains | | | | | | | | | | | | | | Beaumont, "maximum benefit" | 5.0 | 1.5 | 2.6 | 2.0 | 1.6 | 2.5 | 2.9 | 2.9 | 2.7 | -0.2 | 2.3 | | | Beaumont, "antidegradation" | 1.5 | 1.5 | 2.6 | 2.0 | 1.6 | 2.5 | 2.9 | 2.9 | 2.7 | -0.2 | None (-1.2) | | | Bunker Hill-A | 2.7 | 2.7 | 4.5 | 4.3 | 4.0 | 4.0 | 4.0 | 3.9 | 3.8 | -0.1 | None (-1.1) | | | Bunker Hill-B | 7.3 | 7.3 | 5.5 | 5.8 | 5.4 | 5.4 | 5.6 | 5.8 | 5.8 | 0.0 | 1.5 | | | Lytle | 1.5 | 1.5 | 2.8 | 2.7 | 2.7 | 2.6 | 2.5 | 2.4 | 2.4 | 0.0 | None (-0.9) | | | San Timoteo, "maximum benefit" | 5.0 | 2.7 | 2.9 | ? | ? | 0.8 | 2.3 | 2.0 | 1.5 | -0.5 | 3.5 | | | San Timoteo, "antidegradation" | 2.7 | 2.7 | 2.9 | ? | ? | 0.8 | 2.3 | 2.0 | 1.5 | -0.5 | 1.2 | | | Yucaipa, "maximum benefit" | 5.0 | 4.2 | 5.2 | 5.4 | 5.3 | 6.2 | 6.3 | 6.2 | 5.9 | -0.3 | None (-0.9) | | | Yucaipa, "antidegradation" | 4.2 | 4.2 | 5.2 | 5.8 | 5.3 | 6.2 | 6.3 | 6.2 | 5.9 | -0.3 | None (-1.7) | | | San Jacinto Basins | | | | | | ' | | | ' | | , , | | | Canyon | 2.5 | 2.5 | 1.6 | 2.1 | 1.9 | 2.7 | 2.0 | 2.0 | 1.7 | -0.3 | 0.8 | | | Hemet-South | 4.1 | 4.1 | 5.2 | 5.4 | 5.5 | 5.2 | 5.7 | 5.7 | 5.5 | -0.2 | None (-1.4) | | | Lakeview/Hemet North | 1.8 | 1.8 | 2.7 | 3.4 | 2.7 | 2.6 | 2.5 | 2.6 | 2.9 | 0.3 | None (-1.1) | | | Menifee | 2.8 | 2.8 | 5.4 | 6.0 | 4.7 | 4.4 | 4.6 | 4.5 | 4.8 | 0.3 | None (-2) | | | Perris-North | 5.2 | 5.2 | 4.7 | 6.7 | 6.5 | 7.4 | 7.3 | 7.4 | 7.8 | 0.4 | None (-2.6) | | | Perris-South | 2.5 | 2.5 | 4.9 | 5.9 | 5.5 | 5.8 | 5.8 | 6.0 | 6.0 | 0.0 | None (-3.5) | | | San Jacinto-Lower Pressure | 1.0 | 1.0 | 1.9 | 1.8 | 1.2 | 1.1 | 1.1 | 1.5 | 1.7 | 0.2 | None (-0.7) | | | San Jacinto-Upper Pressure, "maximum benefit" | 7.0 | 1.4 | 1.9 | 1.7 | 1.6 | 1.5 | 1.4 | 1.6 | 1.1 | -0.5 | 5.9 | | | San Jacinto-Upper Pressure,
"antidegradation" | 1.4 | 1.4 | 1.9 | 1.7 | 1.6 | 1.5 | 1.4 | 1.6 | 1.1 | -0.5 | None (0.3) | | | Chino, Rialto / Colton, and Riverside Basins | 2.1 | 2 | 1.0 | 217 | 1.0 | 1.0 | 2.1 | 1.0 | 1.1 | 0.5 | 110112 (0.0) | | | Chino-North, "maximum benefit" | 5.0 | 3.7 | 7.4 | 8.7 | 9.7 | 9.5 | 10.0 | 10.3 | 10.3 | 0 | None (-5.3) | | | Chino-1, "antidegradation" | 5.0 | 5.0 | 8.4 | 8.9 | 9.3 | 9.1 | 10.0 | 10.5 | 10.4 | -0.1 | None (-5.4) | | | Chino-2, "antidegradation" | 2.9 | 2.9 | 7.2 | 9.5 | 10.7 | 10.3 | 10.7 | 10.9 | 10.9 | 0 | None (-8) | | | Chino-3, "antidegradation" | 3.5 | 3.5 | 6.3 | 6.8 | 8.2 | 8.4 | 8.5 | 8.9 | 9.2 | 0.3 | None (-5.7) | | | Chino-East | 10.0 | 13.3 | 29.1 | 9.6 | 12.7 | 15.7 | 21.0 | 22.0 | 22.0 | 0.0 | None (-12) | | | Chino-South | 4.2 | 4.2 | 8.8 | 15.3 | 25.7 | 26.8 | 28.0 | 27.8 | 27.6 | -0.2 | None (-23.4) | | | Colton | 2.7 | 2.7 | 2.9 | 2.9 | 2.9 | 2.8 | 2.7 | 3.3 | 3.3 | 0.0 | None (-0.6) | | | Cucamonga, "maximum benefit" | 5.0 | 2.4 | 4.4 | 4.3 | 4.0 | 4.1 | 4.1 | 4.3 | 4.7 | 0.4 | 0.3 | | | Cucamonga, "antidegradation" | 2.4 | 2.4 | 4.4 | 4.3 | 4.0 | 4.1 | 4.1 | 4.3 | 4.7 | 0.4 | None (-2.3) | | | Rialto | 2.0 | 2.0 | 2.7 | 2.6 | 2.9 | 3.1 | 3.2 | 3.4 | 3.5 | 0.1 | None (-1.5) | | | Riverside-A | 6.2 | 6.2 | 4.4 | 4.9 | 4.9 | 5.2 | 5.4 | 5.6 | 5.7 | 0.1 | 0.5 | | | Riverside-B | 7.6 | 7.6 | 8.0 | 7.8 | 8.3 | 8.4 | 6.7 | 6.6 | 6.5 | -0.1 | 1.1 | | | Riverside-C | 8.3 | 8.3 | 15.5 | 15.3 | 15.3 | 14.8 | 14.5 | 2 | ? | ? | 2 | | | Riverside-D | 10.0 | 19.5 | ? | ? | ? | ? | 7 | ? | ? | ; | ; | | | Riverside-E | 10.0 | 13.3 | 14.8 | 15.4 | 15.3 | 15.2 | 10.2 | 10.4 | 10.2 | -0.2 | None (-0.19) | | | Riverside-E
Riverside-F | 9.5 | 12.1 | 9.5 | 10.6 | 10.3 | 10.6 | 10.2 | 10.4 | 10.2 | -0.2 | None (-0.19) | | | Prado Basin | SWQO
applies | 4.3 | 9.5 | | | | 10.1 | | 10.5 | -0.0 | NOTIC (-0.6) | | Table 3-2: Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity (Page 2 of 2) | | | rate Concentrati | rate Concentration (mg/L) | | | | | | | | | |------------------------------|-------------------------------|------------------------------------|---------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------------------|--------------------------| | Groundwater Management Zones | Water
Quality
Objective | Historical
Ambient ¹ | 1997
Ambient | 2003
Ambient | 2006
Ambient | 2009
Ambient | 2012
Ambient | 2015
Ambient | 2018
Ambient | Difference
from 2015 to
2018 | Assimilative
Capacity | | Elsinore / Temescal Valleys | | | | | | | | | | | | | Arlington | 10.0 | 25.5 | ? | 26.0 | 20.4 | 18.1 | 18.3 | 17.8 | 16.6 | -1.2 | None (-6.6) | | Bedford | ? | ? | ? | 2.8 | ? | ? | ? | ? | ? | ? | ? | | Coldwater | 1.5 | 1.5 | 2.6 | 2.4 | 2.6 | 2.8 | 2.8 | 2.2 | 2.3 | 0.1 | None (-0.8) | | Elsinore | 1.0 | 1.0 | 2.6 | 2.4 | 2.4 | 2.2 | 2.1 | 2.2 | 2.3 | 0.1 | None (-1.3) | | Lee Lake | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | | Temescal | 10.0 | 11.8 | 13.2 | 12.8 | 12.6 | 12.0 | 10.9 | 10.9 | 10.2 | -0.7 | None (-0.2) | | Warm Springs Valley | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | | Orange County Basins | | | | | | | | | | | | | Irvine | 5.9 | 5.9 | 7.4 | 6.5 | 6.5 | 6.7 | 6.7 | 6.4 | 6.4 | 0 | None (-0.5) | | La Habra | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | | Orange County | 3.4 | 3.4 | 3.4 | 3.1 | 3.0 | 3.0 | 2.9 | 3.0 | 3.0 | 0 | 0.4 | | Santiago | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | #### **SECTION 4** # Interpretive Tools The genesis of the AWQ interpretive tools occurred during the 1990 to 2009 recomputation effort, when unexpected changes in salinity were observed in the recomputation results for the OC and other GMZs. It was clear to the Task Force that the change in ambient TDS concentrations in the OC GMZ was caused by improvements in the monitoring network and not by any real regional changes in groundwater chemistry. Specifically, new data were incorporated into the AWQ analysis via new wells that had been installed in areas that were previously not well monitored. The purpose of the interpretive tools is to attempt to characterize the factors that may have influenced changes in AWQ over time, and to determine whether the changes are real (systemic factors) or are artifacts of the methodology (methodological factors). Changes in computed groundwater quality can be caused by the factors listed in Table 4-1. In most cases, both systemic and methodological factors play a role in the computed changes in ambient water quality for a GMZ. However, the relative roles of each factor for each GMZ are not easily quantified. #### IN THIS SECTION GIS On-Line AWQ Data Explorer Change in the Spatial Distribution of TDS and Nitrate in Groundwater at the Santa Ana River Watershed Scale Temporal Trends in TDS and Nitrate Concentrations Interpretive Tools Summary by Subwatershed Well Attrition Analysis Interpretive Tools Analysis Table 4-1. Systemic and Methodological Factors Affecting Groundwater Quality. | Category | Factor | |------------------------------|--| | Systemic Change | The movement of solutes from the vadose zone to the saturated zone. | | Systemic Change | Changes in water levels that affect groundwater storage in a GMZ | | Systemic Change | Revised understanding of hydrogeologic physical models, which may change aquifer geometry and aquifer properties. | | Systemic Change | Pumping/recharge stresses and/or groundwater flow within or between GMZs that can add, remove, and/or transport TDS and nitrate constituents in groundwater. | | Methodological Change | The addition or loss of wells within GMZs. | | Methodological Change | The geographic distribution of added or lost wells within GMZs. | | Methodological Change | Differences in the techniques employed to contour and interpolate water quality data. | | Methodological Change | The elimination of three years of data from the analysis (1996 to 1998). | | Methodological Change | The addition of three years of data to the analysis (2016 to 2018). | The objective of the Interpretative tools task is to compare the current AWQ determinations with previous recomputations. More specifically, the interpretive tools will attempt to show how and why the 2018 estimates of current AWQ changed from the 2015 estimates of current AWQ for each GMZ. The BMPTF envisions a multi-faceted approach, where the interpretive tools would include the following: - A spatial analysis of groundwater quality change comparing the distribution of AWQ statistics across GMZs. (Section 4.2) - A temporal analysis of groundwater quality change comparing basin-level trends to trends observed in individual "key" well locations. (Section 4.3) - Appendix B contains subwatershed analyses with the data depicted in a map-atlas or infographics format (Section 4.4) - A forward-looking analysis of AWQ statistics lost over time, as wells are decommissioned, destroyed, or are otherwise no longer monitored (well attrition analysis, Section 4.5). A cloud-based mapping tool has been developed to allow the BMPTF members to drill into the data behind the interpretive tools. # 4.1 GIS On-Line AWQ Data Explorer The project team developed an interactive, web-accessible, GIS toolbox using ArcGIS Online, which is a cloud-based mapping and analysis solution. The BMPTF members will be enabled to make their own maps, analyze AWQ data, and can share and collaborate within their organizations and/or with other parties. ArcGIS Online provides a convenient way to explore data collected and data that was computed for the 1999 – 2018 Ambient Water Quality. Currently there are several interactive web maps available online where each individual well point whether it is a point statistic, average, groundwater elevation, etc. may be inspected. Each online map may have one or more "slides," which are map views with various layers displayed. The user can pan and zoom and obtain metadata by selecting GMZs or wells. The legend can be displayed by clicking this symbol in the upper right hand corner of the map. Ctrl + click to follow the links (blue + underline) to the AWQ Data Explorer websites. - 1. <u>AWQ Draft TDS Nitrate Data Loss Risk</u> Two slides: Nitrate Data Loss Risk and TDS Data Loss Risk. Both symbolize well points by new and potential well point statistics, wells that are at risk of data loss if not sampled by the year listed for both point statistics and averages, and point statistics and averages for all other well points. - 2. AWQ Draft TDS and Nitrate Well Attrition Analysis This web map contains 13 slides: - a. Groundwater Elevations Symbolized all well points with a GWE. - b. Nitrate Well Attrition Analysis Nitrate well points by point statistics and averages symbolized by high or medium risk, new or potential point statistics, and all other point statistic and average well points not classified by risk, new, or potential point statistics. - c. TDS Well Attrition Analysis TDS well points by point statistics and averages symbolized by high or medium risk, new or potential point statistics, and all other point statistic and average well points not classified by risk, new, or potential point statistic. - d. The rest of the slides show each individual data grouping (e.g. point statics) from b and c - 3. <u>AWQ Draft Nitrate Key Well Trends</u> One slide: key well points symbolized by very significantly increasing to very significantly decreasing trend in nitrate at the well over the computation period. - 4. <u>AWQ Draft TDS Key Well Trends</u> One slide: key well points symbolized by very significantly increasing to very significantly decreasing trend in TDS at the well over the computation period. - 5. <u>AWQ Draft Nitrate Well Trends</u> One
slide: well points symbolized by very significantly increasing to very significantly decreasing trend in nitrate at the well over the computation period. - 6. <u>AWQ Draft TDS Well Trends</u> One slide: well points symbolized by very significantly increasing to very significantly decreasing trend in TDS at the well over the computation period. - 7. AWQ Draft Point Statistics Percent Rank four slides: - a. Nitrate Point Statistics and Averages well point stats and averages are symbolized by nitrate concentration in a range. - b. TDS Point Statistics and Averages well point stats and averages are symbolized by TDS concentration in a range. - c. Nitrate Point Statistics and Averages Percent Difference from 2015 2018 nitrate well points stats and averages are symbolized by their percent difference and ranked. d. TDS Point Statistics and Averages Percent Difference from 2015 – 2018 – TDS well points stats and averages are symbolized by their percent difference and ranked. # 4.2 Change in the Spatial Distribution of TDS and Nitrate in Groundwater at the Santa Ana River Watershed Scale The objective of this sub-task was to perform a spatial analysis of water quality changes from the previous recomputation effort to the current recomputation effort at the Santa Ana River Watershed scale. Maps showing the AWQ for nitrate and TDS are provided in Figures 3-4 and 3-7. Color-ramped change maps were also prepared that show a grid-level comparison between prior and current estimates of regional nitrate and TDS concentrations in groundwater for each GMZ (Figures 4-1 and 4-2). These maps include adjacent GMZs to provide both a local and a regional context for the changes in nitrate and TDS estimates. They show the changes in TDS and nitrate concentration from two distinct perspectives: - Changes in concentration by grid cell, where the magnitude of the concentration grid is depicted by color. - 20-year trends of groundwater quality at key wells using the Mann-Kendall test. Note that as these maps show two temporal/spatial comparisons, care should be taken so as not to conflate the two analyses. The first map analysis of change is concentration-based and is a comparison of the 2018 current ambient estimates at each grid cell with the 2015 current ambient estimates. The Mann-Kendall test—performed on each key well—determines if there is a significant trend in water quality (increasing, no trend, or decreasing) for up to 20 annualized average values within the 2018 AWQ recomputation dataset. A very significant increasing trend does not necessarily mean that the trend has a high positive slope or that the concentrations are high; it means only that the trend is monotonically increasing. The Mann-Kendall test was employed to analyze data collected over time to determine whether there are consistently increasing or decreasing trends. The Mann-Kendall test is non-parametric and allows for missing data, irregularly spaced measurement periods, and non-detect values (Gibbons and Coleman, 2001). In the test, the values are ordered by sample date and the signs (+/–) are recorded for all of the possible differences between a given value and every value that preceded it in the time series. The Mann-Kendall statistic "S" is defined as the number of positive differences (+) minus the number of negative differences (–). S and n, the number of sample dates, together define a probability (p-value) that defines possible trends as one of the following: - Not calculated (either p-value = 0 or n =1) - Very significantly increasing (p-value ≤ 0.001, positive slope) - Significantly increasing (p-value ≤ 0.01, positive slope) - Increasing (p-value ≤ 0.1, positive slope) - No trend (p-value > 0.1 or slope = 0) - Decreasing (p-value ≤ 0.1, negative slope) - Significantly decreasing (p-value ≤ 0.01, negative slope) - Very significantly decreasing (p-value ≤ 0.001, negative slope) The following symbology was used to represent the estimated trends in Figures 4-1 and 4-2: More detailed discussions at the subwatershed scale are provided in Section 4.3. ### 4.3 Temporal Trends in TDS and Nitrate Concentrations The objective of this sub-task was to perform a temporal analysis of water quality changes from the previous recomputation effort to the current recomputation effort. Time-series charts of groundwater elevation, TDS, and nitrate concentrations were generated for all 6,756 wells in the 2018 AWQ database that contained data. These plots are provided electronically in Appendix A.7. Data from the previous period are depicted with dark blue dots, while data collected for the current (2016 through 2018) period are shown as orange dots. In addition, the point selected to represent Fall 2018 groundwater elevation (closest date to October 15, 2018) is shown with a black dot. The statistics table included in Appendix A.2 provides a lookup table to identify each of the time-series plots by the unique Well ID. Each interested stakeholder can identify a well of interest by GMZ, owner, and local well name, which is linked in a 1:1 relationship to the Well ID. A number of key wells have previously been selected for each GMZ based on location, perforated intervals, the density and period of available water quality data, and the quality of the dataset, and have been part of two iterations of this project to date (WEI, 2014). In this technical memorandum, the data from the same key wells were analyzed to ensure continuity with previous recomputation efforts. Key well data are meant to describe how groundwater quality is changing in certain areas (and depth intervals) within each GMZ. Key well trends for each GMZ are provided in Tables 4-2 and 4-3 for TDS and nitrate, respectively. These tables summarize the number of key wells in each GMZ, as well as the number of wells in categories of significance in the Mann-Kendall trend analyses. The net trend of all key wells in each GMZ is also estimated and shown in Tables 4-2 and 4-3. For each GMZ, further analyses of key well trend data are provided in Appendix B. Table 4-2: Key Well Trends for TDS, 1999-2018 (Page 1 of 2) | | | | | | Total Disso | olved Solids | | | | |--|---------------------|-------------------------------------|-----------------------------|--------------|-------------|--------------|-----------------------------|-------------------------------------|--------------| | Groundwater Management Zone | No. of Key
Wells | Very
Significantly
Decreasing | Significantly
Decreasing | Decreasing | No Trend | Increasing | Significantly
Increasing | Very
Significantly
Increasing | Net Trend | | San Bernardino Valley and Yucaipa / Beaumont Pla | ains | | | | | | | | | | Beaumont | 6 | _ | _ | _ | 6 | 1 | _ | _ | _ | | Bunker Hill-A | 5 | _ | _ | _ | 1 | 1 | 3 | _ | Increasing | | Bunker Hill-B | 5 | _ | _ | _ | 2 | 1 | 2 | _ | Increasing | | _ytle | 4 | _ | _ | | 3 | 1 | _ | _ | | | San Timoteo | 6 | _ | _ | _ | 6 | _ | _ | _ | _ | | ⁄ucaipa | 5 | _ | - | - | 3 | 2 | - | - | Increasing | | San Jacinto Basins | | | | | | | | | | | Canyon | 4 | - | _ | - | 3 | 1 | _ | _ | - | | lemet-South | 5 | _ | _ | _ | 3 | 1 | 1 | _ | Increasing | | akeview/Hemet North | 4 | 1 | _ | _ | <u> </u> | <u> </u> | 2 | 1 | Increasing | | Menifee | 5 | _ | 1 | _ | 3 | 1 | _ | _ | _ | | Perris-North | 4 | _ | _ | _ | 1 | 1 | _ | 2 | Increasing | | Perris-South | 6 | 1 | 1 | 2 | 2 | _ | _ | _ | Decreasing | | an Jacinto-Lower Pressure | 4 | 1 | _ | _ | 2 | 1 | _ | 1 | Decreasing | | an Jacinto-Upper Pressure | 6 | _ | _ | 2 | _ | 4 | _ | _ | Increasing | | hino, Rialto / Colton, and Riverside Basins | | | | | | | | | | | hino-North | 22 | 1 | _ | 1 | 7 | 8 | 1 | 3 | Increasing | | Chino-1/Chino North | 9 | 1 | _ | 1 | 1 | 5 | _ | _ | Increasing | | Chino-2/Chino North | 7 | _ | _ | _ | 4 | 2 | _ | 1 | _ | | Chino-3/Chino North | 6 | _ | _ | _ | 2 | 1 | 1 | 2 | Increasing | | Chino-East | 4 | _ | 1 | _ | 3 | _ | _ | _ | Decreasing | | hino-South | 5 | 1 | 1 | _ | 3 | _ | _ | _ | _ | | Colton | 2 | _ | _ | 1 | 1 | _ | _ | _ | _ | | Cucamonga | 3 | _ | _ | _ | _ | 1 | 1 | 1 | Increasing | | tialto | 4 | _ | _ | _ | 4 | _ | _ | _ | Increasing | | tiverside-A | 5 | _ | _ | _ | 3 | 2 | _ | _ | _ | | tiverside-B | 2 | _ | _ | _ | 2 | _ | _ | _ | _ | | liverside-C ^a | 0 | _ | _ | _ | _ | _ | _ | _ | _ | | tiver side-D ^a | 0 | _ | _ | _ | _ | _ | _ | _ | _ | | iverside-E | 3 | _ | _ | 1 | 2 | _ | _ | _ | _ | | tiverside-F | 4 | _ | 1 | _ | 3 | _ | _ | _ | _ | | rado Basin ^b | N/A | _ | _ | _ | _ | _ | _ | - | N/A | | lsinore / Temescal Valleys | | | | | | | | | | | rlington | 3 | _ | _ | _ | 1 | 1 | _ | _ | Increasing | | Sedford* | N/A | _ | _ | _ | _ | _ | _ | _ | N/A | | Coldwater | 3 | _ | _ | _ | 3 | _ | _ | _ | _ | | Isinore | 5 | _ | _ | _ | 3 | 1 | _ | 1 | _ | | ee Lake ^a | N/A | _ | _ | _ | _ | _ | _ | _ | N/A | | 'emescal | 4 | 1 | _ | 1 | 1 | 1 | _ | _ | | | Varm Springs Valley ^a | N/A | _ | _ | _ | _ | _ | _ | _ | N/A | Table 4-2: Key Well Trends for TDS, 1999-2018 (Page 2 of 2) | | | Total Dissolved Solids | | | | | | | | | | | |-----------------------------|---------------------|-------------------------------------|-----------------------------|------------|----------|------------|-----------------------------|-------------------------------------|------------|--|--|--| | Groundwater Management Zone | No. of Key
Wells | Very
Significantly
Decreasing | Significantly
Decreasing | Decreasing | No Trend | Increasing | Significantly
Increasing | Very
Significantly
Increasing | Net Trend | | | | | Orange County Basins | | | | | | | | | | | | | | Irvine | 9 | 1 | _ | 1 | 5 | _ | 1 | 1 | Decreasing | | | | | La Habra ^a | N/A | _ | _ | _ | _ | _ | _ | _ | N/A | | | | | Orange County | 22 | 7 | - | 1 |
12 | 1 | 1 | _ | _ | | | | | Santiago ^a | N/A | _ | - | _ | _ | _ | _ | _ | N/A | | | | Note: Mann-Kendall trend analyses were performed on annualized average concentrations for each well between 1996 and 2015. No trend: p-value >0.1 or slope = 0; Increasing/Decreasing: p-value ≤0.1; Significant trend: p-value ≤0.01; Very significant trend: p-value ≤0.001 ^a 1999-2018 ambient water quality not calculated b Surface water objectives Table 4-3: Key Well Trends for Nitrate, 1999-2018 (Page 1 of 2) | | | | | | Total Disso | lved Solids | | | | |---|---------------------|-------------------------------------|-----------------------------|--------------|-------------|--------------|-----------------------------|-------------------------------------|--------------| | Groundwater Management Zone | No. of Key
Wells | Very
Significantly
Decreasing | Significantly
Decreasing | Decreasing | No Trend | Increasing | Significantly
Increasing | Very
Significantly
Increasing | Net Trend | | San Bernardino Valley and Yucaipa / Beaumont Pl | ains | | | | | | | | | | Beaumont | 6 | _ | _ | _ | 5 | 1 | _ | 1 | _ | | Bunker Hill-A | 5 | _ | _ | 1 | 3 | 1 | _ | _ | _ | | Bunker Hill-B | 5 | _ | 1 | _ | 2 | _ | _ | 2 | Increasing | | Lytle | 4 | | _ | 1 | 1 | 2 | _ | _ | | | San Timoteo | 6 | _ | _ | _ | 6 | _ | _ | _ | _ | | Yucaipa | 5 | _ | _ | 1 | 2 | 1 | _ | _ | Increasing | | San Jacinto Basins | | | | | | | | | | | Canyon | 4 | - | _ | - | 4 | _ | _ | _ | - | | Hemet-South | 5 | _ | _ | - | 2 | 1 | 1 | 1 | Increasing | | akeview/Hemet North | 4 | 1 | _ | - | 1 | 1 | _ | 1 | | | Menifee | 5 | _ | _ | 1 | 4 | _ | _ | _ | _ | | Perris-North | 4 | _ | _ | _ | 2 | _ | 1 | 1 | Increasing | | Perris-South | 6 | _ | _ | _ | 4 | 1 | _ | 1 | _ | | San Jacinto-Lower Pressure | 4 | _ | _ | _ | 3 | 1 | _ | _ | _ | | an Jacinto-Upper Pressure | 6 | _ | 1 | _ | 5 | _ | _ | _ | _ | | Chino, Rialto / Colton, and Riverside Basins | | | | | | | | | | | Chino-North | 22 | 1 | _ | _ | 6 | 3 | 2 | 9 | Increasing | | Chino-1/Chino North | 9 | _ | _ | _ | 4 | 1 | 2 | 1 | Increasing | | Chino-2/Chino North | 7 | _ | _ | _ | 2 | 1 | _ | 4 | Increasing | | Chino-3/Chino North | 6 | 1 | _ | _ | _ | 1 | _ | 4 | _ | | Chino-East | 4 | _ | 1 | _ | 3 | _ | _ | _ | _ | | Chino-South | 5 | 1 | _ | 2 | 2 | _ | _ | _ | _ | | Colton | 2 | _ | 1 | _ | _ | _ | 1 | _ | _ | | Cucamonga | 3 | _ | _ | _ | 1 | _ | _ | 2 | Increasing | | Rialto | 4 | _ | _ | _ | 2 | 2 | _ | _ | Increasing | | Riverside-A | 5 | _ | _ | _ | 1 | 1 | 2 | 1 | Increasing | | Riverside-B | 2 | _ | _ | _ | 1 | _ | _ | 1 | _ | | Riverside-C ^a | 0 | _ | _ | _ | _ | _ | _ | _ | _ | | Riverside-D ^a | 0 | _ | _ | _ | _ | _ | _ | _ | _ | | Riverside-E | 3 | _ | _ | 2 | _ | 1 | <u> </u> | _ | Decreasing | | Riverside-F | 4 | 1 | _ | _ | 1 | _ | _ | 2 | _ | | Prado Basin ^b | N/A | _ | _ | _ | _ | _ | <u> </u> | _ | N/A | | Elsinore / Temescal Valleys | | | | | | | | | | | Arlington | 3 | 1 | _ | 1 | 1 | _ | _ | _ | _ | | Bedford* | N/A | _ | _ | _ | _ | _ | _ | _ | N/A | | Coldwater | 3 | _ | _ | 1 | 2 | _ | _ | _ | _ | | Elsinore | 5 | _ | _ | 2 | 2 | 1 | _ | _ | Decreasing | | Lee Lake ^a | N/A | _ | _ | _ | _ | _ | _ | _ | N/A | | Temescal | 4 | _ | 1 | _ | 3 | _ | _ | _ | _ | | Warm Springs Valley ^a | N/A | _ | _ | _ | _ | _ | _ | _ | N/A | Table 4-3: Key Well Trends for Nitrate, 1999-2018 (Page 2 of 2) | | | Total Dissolved Solids | | | | | | | | | | | |-----------------------------|---------------------|-------------------------------------|-----------------------------|------------|----------|------------|-----------------------------|-------------------------------------|------------|--|--|--| | Groundwater Management Zone | No. of Key
Wells | Very
Significantly
Decreasing | Significantly
Decreasing | Decreasing | No Trend | Increasing | Significantly
Increasing | Very
Significantly
Increasing | Net Trend | | | | | Orange County Basins | | | | | | | | | | | | | | Irvine | 9 | _ | 1 | 1 | 2 | 1 | 3 | 1 | Decreasing | | | | | La Habra ^a | N/A | _ | _ | _ | _ | _ | _ | _ | N/A | | | | | Orange County | 22 | 9 | 2 | 4 | 4 | _ | 1 | 2 | Decreasing | | | | | Santiago ^a | N/A | _ | _ | _ | _ | _ | _ | _ | N/A | | | | Note: Mann-Kendall trend analyses were performed on annualized average concentrations for each well between 1996 and 2015. No trend: p-value >0.1 or slope = 0; Increasing/Decreasing: p-value ≤0.1; Significant trend: p-value ≤0.01; Very significant trend: p-value ≤0.001 a 1999-2018 ambient water quality not calculated b Surface water objectives ## 4.4 Interpretative Tools Summary by Subwatershed The body of this technical memorandum describes the spatial and temporal distributions of nitrate and TDS and trend analyses on a watershed-wide basis (Sections 4.1 and 4.2). Also included in this technical memorandum are a series of packets that provide a more detailed and focused analysis of TDS and nitrate (Appendix B). These packets follow a map-atlas or infographics format. A packet is provided in Appendix B for each subwatershed area (e.g., the Riverside GMZs [Appendix B13]). Each packet contains the following: - Cover Page. The cover page includes a subwatershed location map, list of maps in each subwatershed package, a summary table displaying the WQO, historical AWQ determinations, and assimilative capacity, and a time series chart displaying the TDS and Nitrate be GMZ. - **2018 Groundwater storage and elevation contour map.** This map shows the Fall 2018 groundwater elevation at each well, along with the hand-drawn contour maps of groundwater elevation, with the exception of the San Jacinto, Orange County, and Irvine GMZs, where Spring 2018 elevation contour maps were provided by EMWD and OCWD. This map also shows groundwater storage (AF) in each grid cell, based on the thickness of the saturated zone and the specific yield. - **Nitrate concentration and contour map.** This map shows the water quality point statistic and average nitrate concentration for the wells that were used in the AWQ determination. Nitrate concentration contours and concentration values per grid cell are also shown on this map. - TDS concentration and contour map. This map shows the water quality point statistic and average TDS concentration for the wells that were used in the AWQ determination. TDS concentration contours and concentration values per grid cell are also shown on this map. - Nitrate change map and key wells. On this map, the change in computed nitrate AWQ from the 2015 to the 2018 recomputation period is shown for each grid cell. Small gray dots represent wells for which point statistics could be computed for the 2018 recomputation period. The results of the trend analyses for each of the key wells is shown with the following symbology: ▲ Very Significantly Increasing ▲ Significantly Increasing ▲ Increasing No Trend V Decreasing Significantly Decreasing Very Significantly Decreasing ### 4.5 Well Attrition Analysis The well attrition analysis is a forward-looking tool that provides an opportunity for the BMPTF to prevent the loss of water quality point statistics at wells in the next triennial recomputation of ambient water quality. The objective of this task is to identify the following: - High Risk for Point Statistics. Wells with computed water quality point statistics that will not qualify for inclusion in the next recomputation (2002 to 2021) of AWQ if no data are collected during 2019-2021. - Medium Risk for Point Statistics. Wells with computed water quality point statistics that will not qualify for inclusion in the following recomputation (2005 to 2024) of AWQ if no data are collected during 2022-2024. - *High Risk for Average Values*. Wells with average values that will not qualify for inclusion in the next recomputation (2002 to 2021) of AWQ if no data are collected during 2019-2021. - Medium Risk for Average Values. Wells with average values that will not qualify for inclusion in the following recomputation (2005 to 2024) of AWQ if no data are collected during 2022-2024. - New statistic: wells that are now eligible to have a water quality point statistic computed for the 2018 current AWQ recomputation period. - Potential statistic: wells that will be eligible to have a water quality point statistic computed for the next period (2006 to 2024), if a sample is collected and analyzed in the 2022 to 2024 period. The well attrition analyses are summarized in Tables 4-4 and 4-5 for TDS and nitrate, respectively. For each GMZ, these tables provide the number of the total wells, wells with water quality point statistics, high- and medium-risk wells for water quality point statistics, newly eligible wells with point statistics, high- and medium-risk wells for average values, and potentially eligible wells for point statistics. Lists of wells that are at high risk and medium risk for TDS and nitrate and for water quality point statistics and averages are included as a spreadsheet Appendix A. The well attrition analysis is also shown in Figures 4-3 and 4-4 for TDS and nitrate, respectively. The wells have the symbology described in Section 4.3 for the change maps/well attrition maps included in Appendix B. In addition, analyses were performed to parse the high and medium risk wells for point statistics and average, based on each of the three years in the 2019, 2020, and 2021 period. Note that those wells that required a sample result in 2019 in order to remain in the AWQ monitoring program – and that were not sampled in 2019 – are no longer eligible to be in the program. Tables 4-6 and 4-7 list the number of wells that will not be included in AWQ program unless those wells are sampled in 2019, 2020, and 2021. This table includes data for both TDS and nitrate and includes a summary of this
information for each GMZ and for the entire watershed. This analysis provides more detail on precisely which year of the three between 2019 through 2021 wells will need to be sampled to preserve their status and inclusion in the AWQ program. Wells listed for "2019" are already out of the AWQ program unless they were sampled in the last calendar year. Table 4-4: Well Attrition/Well Additions for TDS, 1999-2018 (Page 1 of 2) | | Total Dissolved Solids | | | | | | | | | | | | |---|------------------------|------------|------------------------|------------------|-----------------------|------------------------|-------------|--------------------------------|--|--|--|--| | Groundwater Management Zone | Basin | | | Point Statistics | | | Averages | | | | | | | | | Total | | | | | | | | | | | | | Total Wells | Statistics | High Risk ^a | Medium Risk | New Stat ^c | High Risk ^a | Medium Risk | Potential
Stat ^d | | | | | | San Bernardino Valley and Yucaipa / Beaumont Plains | | | | | | | | | | | | | | Beaumont | 99 | 59 | _ | 1 | 2 | 14 | 8 | _ | | | | | | Bunker Hill-A | 109 | 85 | 3 | 5 | _ | 9 | 1 | _ | | | | | | Bunker Hill-B | 146 | 105 | 2 | 18 | _ | 17 | 3 | _ | | | | | | Lytle | 38 | 27 | 1 | 2 | - | 2 | 2 | - | | | | | | San Timoteo | 34 | 25 | _ | 1 | _ | 1 | _ | _ | | | | | | Yucaipa | 114 | 72 | <u> </u> | 5 | 13 | 5 | 14 | - | | | | | | San Jacinto Basins | | | | | | | | | | | | | | Canyon | 27 | 24 | _ | 1 | | _ | 1 | | | | | | | Hemet-South | 58 | 41 | _ | 4 | 1 | 3 | 2 | _ | | | | | | Lakeview/Hemet North | 88 | 66 | 1 | 3 | 1 | 3 | 4 | 1 | | | | | | Menifee | 22 | 19 | _ | 3 | _ | 2 | 1 | _ | | | | | | Perris-North | 42 | 33 | _ | 1 | 7 | 1 | 2 | 1 | | | | | | Perris-South | 67 | 54 | _ | 2 | 1 | 2 | 4 | _ | | | | | | San Jacinto-Lower Pressure | 17 | 12 | 1 | 4 | _ | 1 | _ | _ | | | | | | San Jacinto-Upper Pressure | 111 | 81 | 2 | 9 | _ | 4 | 2 | 3 | | | | | | Chino, Rialto / Colton, and Riverside Basins | | | | | | | | | | | | | | Chino-North | 482 | 287 | 4 | 7 | _ | 45 | 16 | 16 | | | | | | Chino-1/Chino North | 179 | 102 | 1 | _ | _ | 27 | 10 | 14 | | | | | | Chino-2/Chino North | 194 | 107 | 1 | 6 | _ | 7 | 5 | 2 | | | | | | Chino-3/Chino North | 109 | 78 | 2 | 1 | _ | 11 | 1 | _ | | | | | | Chino-East | 207 | 33 | <u> </u> | _ | _ | 3 | 2 | 6 | | | | | | Chino-South | 59 | 33 | _ | 2 | _ | 1 | 11 | _ | | | | | | Colton | 10 | 9 | _ | _ | _ | 1 | _ | _ | | | | | | Cucamonga | 28 | 26 | _ | 3 | _ | 1 | _ | _ | | | | | | Rialto | 91 | 58 | 2 | 4 | 6 | 6 | 1 | _ | | | | | | Riverside-A | 77 | 43 | _ | 1 | 1 | 5 | 1 | _ | | | | | | Riverside-B | 27 | 10 | _ | _ | _ | _ | 2 | _ | | | | | | Riverside-C | 1 | 0 | _ | _ | _ | 1 | _ | _ | | | | | | Riverside-D | 1 | 1 | <u> </u> | _ | _ | _ | _ | _ | | | | | | Riverside-E | 8 | 5 | _ | _ | _ | - | _ | _ | | | | | | Riverside-F | 27 | 22 | _ | _ | 1 | _ | _ | _ | | | | | | Prado Basin | 40 | 22 | _ | _ | <u> </u> | _ | _ | 4 | | | | | | Elsinore / Temescal Valleys | | | | | | | | | | | | | | Arlington | 19 | 6 | _ | _ | _ | 3 | _ | _ | | | | | | Bedford | 6 | 4 | _ | 1 | _ | _ | _ | 2 | | | | | | Coldwater | 8 | 6 | _ | 1 | _ | _ | 1 | _ | | | | | | Elsinore | 16 | 12 | | _ | _ | 3 | _ | _ | | | | | | Lee Lake | 7 | 6 | _ | _ | | _ | _ | _ | | | | | | Temescal | 45 | 36 | 5 | 2 | _ | 1 | _ | _ | | | | | | Warm Springs Valley | 1 | | _ | <u></u> | _ | _ | _ | 1 | | | | | Table 4-4: Well Attrition/Well Additions for TDS, 1999-2018 (Page 2 of 2) | Groundwater Management Zone | Basin | Total Dissolved Solids Basin Totals Point Statistics Averages | | | | | | | | | |-----------------------------|-------------|--|------------------------|-------------|-----------------------|------------------------|-------------|--------------------------------|--|--| | | Total Wells | Total
Statistics | High Risk ^a | Medium Risk | New Stat ^c | High Risk ^a | Medium Risk | Potential
Stat ^d | | | | Orange County Basins | | | | | | | | | | | | Irvine | 119 | 101 | _ | 4 | _ | 8 | 1 | _ | | | | La Habra | 1 | 1 | _ | _ | _ | _ | _ | _ | | | | Orange County | 1,710 | 1,320 | 2 | 112 | 3 | 54 | 33 | 49 | | | | Santiago | 3 | 3 | _ | _ | - | _ | _ | _ | | | - a High risk wells will be lost during the 1999-2018 study period if not sampled before the end of 2020. b Medium risk wells will be lost during the 2002-2021 study period if not sampled before 2021. c New stats are wells with the first sample collected 2010-2013, which meets the minimum number of annualized averages to become a point statistic. d Potential stats are wells with the first sample collected 2014-2015; it is highly recommended that these wells continue to be sampled for the upcoming AWQ recomputation. - e 1999-2018 AWQ not calculated. f Surface water objectives. Table 4-5: Well Attrition/Well Additions for Nitrate, 1999-2018 (Page 1 of 2) | | | | | Nit | rate | | | | |---|-------------|------------|------------------------|-----------------------------|-----------------------|------------------------|-----------------------------|--------------------------------| | | Basin | Totals | | Point Statistics | | | Averages | | | Groundwater Management Zone | Busin | Total | | | | | Averages | | | | Total Wells | Statistics | High Risk ^a | Medium
Risk ^b | New Stat ^c | High Risk ^a | Medium
Risk ^b | Potential
Stat ^d | | San Bernardino Valley and Yucaipa / Beaumont Pla | ains | | | Misk | | | Misk | Stat | | Beaumont | 97 | 66 | _ | 4 | _ | 8 | 7 | _ | | Bunker Hill-A | 105 | 85 | 2 | 4 | _ | 7 | 1 | <u> </u> | | Bunker Hill-B | 136 | 99 | 3 | 7 | 1 | 11 | 2 | _ | | Lytle | 38 | 35 | _ | 6 | _ | _ | 1 | | | San Timoteo | 34 | 21 | _ | 1 | _ | _ | 1 | _ | | Yucaipa | 117 | 78 | | 5 | 2 | 2 | 12 | | | San Jacinto Basins | | | | | | | | | | Canyon | 27 | 19 | _ | 1 | _ | _ | 1 | _ | | Hemet-South | 58 | 41 | | 4 | 1 | 3 | 2 | _ | | Lakeview/Hemet North | 88 | 54 | 1 | 2 | 1 | 3 | 6 | _ | | Menifee | 22
42 | 16
28 | 1 | 3
6 | _ | 1 | 3 | _ | | Perris-North | | | | | | | | _ | | Perris-South | 67 | 52 | _ | 2 | 1 | 2 | 4 | _ | | San Jacinto-Lower Pressure | 17
111 | 3
35 | 1 | 3 | _ | 1
6 | 8 | _ | | San Jacinto-Upper Pressure Chino, Rialto / Colton, and Riverside Basins | 111 | 33 | _ | 3 | _ | 0 | ٥ | _ | | Chino-North | 573 | 349 | _ | 13 | _ | 34 | 34 | _ | | Chino-1/Chino North | 236 | 129 | _ | 6 | _ | 17 | 21 | _ | | Chino-2/Chino North | 204 | 107 | _ | 4 | _ | 7 | 12 | _ | | Chino-3/Chino North | 133 | 113 | _ | 3 | _ | 10 | 1 | _ | | Chino-East | 493 | 273 | _ | 2 | 2 | 18 | 5 | _ | | Chino-South | 109 | 49 | _ | 3 | _ | 5 | 13 | _ | | Colton | 10 | 8 | 1 | _ | _ | _ | _ | _ | | Cucamonga | 28 | 23 | _ | 3 | _ | 1 | _ | _ | | Rialto | 105 | 58 | 2 | 4 | 4 | 6 | _ | _ | | Riverside-A | 71 | 42 | 2 | 1 | _ | 3 | 2 | _ | | Riverside-B | 48 | 53 | _ | _ | _ | _ | 1 | _ | | Riverside-C | 4 | 3 | _ | _ | _ | 1 | _ | _ | | Riverside-D | 9 | 7 | _ | - | _ | _ | _ | - | | Riverside-E | 9 | 4 | _ | _ | _ | _ | 1 | _ | | Riverside-F | 28 | 19 | _ | _ | 1 | 1 | _ | _ | | Prado Basin | 40 | 22 | _ | _ | _ | - | _ | _ | | Elsinore / Temescal Valleys Arlington | 32 | 19 | _ | _ | _ | 3 | 1 | _ | | | 6 | 4 | _ | 1 | _ | <u> </u> | <u> </u> | _ | | Bedford | | | | | | | | | | Coldwater | 9 | 6 | _ | 1 | _ | _ | _ | _ | | Elsinore | 16 | 10 | _ | _ | _ | 3 | _ | _ | | Lee Lake Temescal | 7 46 | 6
38 | | 5 | _ | | - | _ | | | | | 1 | | _ | 1 | _ | _ | | Warm Springs Valley | 1 | | _ | _ | _ | _ | _ | _ | Table 4-5:Well Attrition/Well Additions for Nitrate, 1999-2018 (Page 2 of 2) | | Nitrate | | | | | | | | | | |--|--|------------------------------------|------------------------|---|--|------------------------|-----------------------------|--------------------------------|--|--| | Current victor Management 7am | Basin Totals | | | Point Statistics | | | Averages | | | | | Groundwater Management Zone | Total Wells | Total
Statistics | High Risk ^a | Medium
Risk ^b | New Stat ^c | High Risk ^a | Medium
Risk ^b | Potential
Stat ^d | | | | Orange County Basins | | | | | | | | | | | | Irvine | 120 | 68 | _ | 3 | _ | 9 | 2 | _ | | | | La Habra | 1 | _ | _ | _ | _ | _ | _ | _ | | | | Orange County | 1,677 | 845 | 3 | 31 | 4 | 57 | 52 | _ | | | | Santiago | 3 | 3 | _ | _ | _ | _ | _ | _ | | | | ^a High risk wells will be lost during the 1999-2018 study pe ^b Medium risk wells will be lost during the 2002-2021 study ^c New stats are wells with the first sample collected 2010-2 ^d Potential stats are wells with the first sample collected 20 ^e 1999-2018 AWQ not calculated. f Surface water objectives. | v period if not sampl
2013, which meets t | ed before 2021.
he minimum numb | er of annualized av | erages to become a
nue to be sampled f | a point statistic.
or the upcoming A\ | VQ recomputation. | | | | | Table 4-6: Well Attrition/Wells at Risk for TDS, 1999-2018 (Page 1 of 2) | | Total Dissolved Solids | | | | | | | | | | |--|------------------------|-----------------
------------------|------|--------------|--------|----------|--------------|--|--| | | | | | | oivea Solias | | | | | | | Groundwater Management Zone | Basin | Totals
Total | Point Statistics | | | | Averages | | | | | | Total Wells | Statistics | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | | | | San Bernardino Valley and Yucaipa / Beaumont Plain | | | | | | | | | | | | Beaumont | 99 | 59 | _ | _ | 1 | _ | 12 | 3 | | | | Bunker Hill-A | 109 | 85 | 3 | 1 | 1 | _ | 8 | 2 | | | | Bunker Hill-B | 146 | 105 | 2 | 9 | 7 | _ | 16 | 3 | | | | Lytle | 38 | 27 | 1 | _ | 2 | _ | 2 | 1 | | | | San Timoteo | 34 | 25 | _ | _ | 1 | _ | 1 | _ | | | | Yucaipa | 114 | 72 | _ | 1 | 2 | _ | 5 | _ | | | | San Jacinto Basins | | | | | | | | | | | | Canyon | 27 | 24 | _ | _ | _ | _ | _ | _ | | | | Hemet-South | 58 | 41 | _ | 1 | _ | _ | 1 | 2 | | | | Lakeview/Hemet North | 88 | 66 | 1 | 1 | 1 | _ | 2 | 2 | | | | Menifee | 22 | 19 | _ | _ | 1 | _ | 2 | 1 | | | | Perris-North | 42 | 33 | 1 | 3 | 2 | _ | 1 | 1 | | | | Perris-South | 67 | 54 | _ | _ | 1 | _ | 2 | 2 | | | | San Jacinto-Lower Pressure | 17 | 12 | 1 | 2 | 1 | _ | 1 | _ | | | | San Jacinto-Upper Pressure | 111 | 81 | 2 | 3 | 4 | _ | 3 | 1 | | | | Chino, Rialto / Colton, and Riverside Basins | | | | | | | | | | | | Chino-North | 482 | 287 | 4 | 2 | 3 | _ | 41 | 16 | | | | Chino-1/Chino North | 179 | 102 | 1 | _ | _ | _ | 25 | 11 | | | | Chino-2/Chino North | 194 | 107 | 1 | 1 | 3 | _ | 6 | 2 | | | | Chino-3/Chino North | 109 | 78 | 2 | 1 | _ | _ | 10 | 2 | | | | Chino-East | 207 | 33 | _ | _ | _ | _ | 3 | _ | | | | Chino-South | 59 | 33 | _ | 1 | 1 | _ | 1 | 7 | | | | Colton | 10 | 9 | _ | _ | _ | _ | 1 | _ | | | | Cucamonga | 28 | 26 | _ | 3 | _ | _ | 1 | _ | | | | Rialto | 91 | 58 | 2 | 1 | 3 | _ | 4 | 2 | | | | Riverside-A | 77 | 43 | _ | _ | 1 | _ | 3 | 2 | | | | Riverside-B | 27 | 10 | _ | _ | _ | _ | _ | _ | | | | Riverside-C | 1 | 0 | _ | _ | _ | _ | _ | _ | | | | Riverside-D | 1 | 1 | _ | _ | _ | _ | _ | _ | | | | Riverside-E | 8 | 5 | _ | _ | _ | _ | _ | _ | | | | Riverside-F | 27 | 22 | _ | _ | _ | _ | _ | _ | | | | Prado Basin | 40 | 22 | _ | _ | _ | _ | _ | _ | | | | Elsinore / Temescal Valleys | 70 | | | | | | | | | | | Arlington | 19 | 6 | _ | _ | _ | _ | 3 | _ | | | | Bedford | 6 | 4 | _ | 1 | _ | _ | _ | _ | | | | Coldwater | 8 | 6 | _ | _ | 1 | _ | _ | _ | | | | Elsinore | 16 | 12 | | | <u> </u> | _ | 3 | | | | | Lee Lak | 7 | 6 | _
_ | _ | | _
_ | _ | _ | | | | Temescal | 45 | 36 | | 2 | - | | | _ | | | | | | | 5 | 2 | _ | _ | 1 | - | | | | Warm Springs Valley | 1 | _ | _ | _ | _ | _ | _ | _ | | | Table 4 6: Well Attrition/Wells at Risk for TDS, 1999-2018 (Page 2 of 2) | | Total Dissolved Solids | | | | | | | | | | |-----------------------------|------------------------|------------|------|------------------|------|------|----------|------|--|--| | Groundwater Management Zone | Basin Totals | | | Point Statistics | | | Averages | | | | | | | Total | | | | | | | | | | | Total Wells | Statistics | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | | | | Orange County Basins | | | | | | | | | | | | Irvine | 119 | 101 | _ | | 1 | _ | 8 | _ | | | | La Habra | 1 | 1 | _ | _ | _ | _ | _ | _ | | | | Orange County | 1,710 | 1,320 | 2 | 59 | 22 | _ | 48 | 19 | | | | Santiago | 3 | 3 | _ | _ | _ | _ | _ | _ | | | Table 4-7: Well Attrition/Wells at Risk for Nitrate, 1999-2018 (Page 1 of 2) | | | Nitrate | | | | | | | | | | |--|-------------|---------------------|--------------|------------------|--------------|--------------|----------|--------------|--|--|--| | Groundwater Management Zone | Basin | Totals | | Point Statistics | | | Averages | | | | | | | Total Wells | Total
Statistics | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | | | | | San Bernardino Valley and Yucaipa / Beaumont Pla | nins | | | | | | | | | | | | Beaumont | 97 | 66 | _ | _ | 4 | _ | 8 | 2 | | | | | Bunker Hill-A | 105 | 85 | 2 | 2 | 1 | _ | 7 | 1 | | | | | Bunker Hill-B | 136 | 99 | 2 | 6 | 1 | _ | 11 | 2 | | | | | _ytle | 38 | 35 | _ | 3 | 3 | _ | _ | _ | | | | | San Timoteo | 34 | 21 | _ | _ | 1 | _ | _ | _ | | | | | Yucaipa | 117 | 78 | _ | _ | 3 | _ | 2 | _ | | | | | San Jacinto Basins | | | | | | | | | | | | | Canyon | 27 | 19 | _ | _ | _ | _ | _ | _ | | | | | Hemet-South | 58 | 41 | _ | 1 | _ | _ | 3 | _ | | | | | Lakeview/Hemet North | 88 | 54 | 1 | 1 | 1 | _ | 3 | 2 | | | | | Menifee | 22 | 16 | _ | _ | 1 | _ | 2 | 1 | | | | | Perris-North | 42 | 28 | 1 | 3 | 1 | _ | 1 | 1 | | | | | Perris-South | 67 | 52 | _ | _ | 1 | _ | 2 | 2 | | | | | San Jacinto-Lower Pressure | 17 | 3 | 1 | 1 | _ | _ | 1 | 1 | | | | | San Jacinto-Upper Pressure | 111 | 35 | _ | _ | 1 | <u>_</u> | 6 | 3 | | | | | Chino, Rialto / Colton, and Riverside Basins | 111 | 33 | | | - | | 0 | J | | | | | Chino-North | 573 | 349 | _ | 4 | 5 | _ | 34 | 10 | | | | | Chino-1/Chino North | 236 | 129 | _ | _ | 4 | _ | 17 | 5 | | | | | Chino-2/Chino North | 204 | 107 | _ | 2 | 1 | _ | 7 | 4 | | | | | Chino-3/Chino North | 133 | 113 | _ | 2 | _ | _ | 10 | 1 | | | | | Chino-East | 493 | 273 | _ | _ | 1 | _ | 18 | 1 | | | | | Chino-South | 109 | 49 | | 1 | 1 | _ | 5 | 10 | | | | | Colton | 109 | 8 | _
1 | _ I | _ I | _ | _ | _ | | | | | | 28 | 23 | <u> </u> | 3 | | _ | 1 | _ | | | | | Cucamonga
Rialto | 105 | 58 | 2 | 1 | 3 | _ | 6 | _ | | | | | Riverside-A | 71 | 42 | | | | _
 _ | | | | | | | Riverside-A
Riverside-B | | | 2 | _ | 1 | | 3 | 1 | | | | | | 48 | 23 | _ | _ | _ | _ | _ | - | | | | | Riverside-C | 4 | 3 | _ | _ | _ | _ | 1 | _ | | | | | Riverside-D | 9 | 7 | _ | _ | _ | _ | _ | _ | | | | | Riverside-E | 9 | 4 | _ | _ | _ | _ | _ | _ | | | | | Riverside-F | 28 | 19 | _ | _ | _ | _ | 1 | _ | | | | | Prado Basin | 40 | 22 | _ | _ | _ | _ | _ | _ | | | | | Elsinore / Temescal Valleys | | 4.5 | | | | | | | | | | | Arlington | 32 | 19 | - | _ | - | - | 3 | _ | | | | | Bedford | 6 | 4 | _ | 1 | _ | _ | _ | _ | | | | | Coldwater | 9 | 6 | _ | _ | 1 | _ | _ | _ | | | | | Elsinore | 16 | 10 | _ | _ | _ | _ | 3 | _ | | | | | Lee Lake | 6 | 4 | _ | _ | _ | _ | _ | _ | | | | | Temescal | 46 | 38 | 1 | 5 | _ | _ | 1 | _ | | | | | Warm Springs Valley | 1 | _ | _ | _ | _ | _ | _ | _ | | | | Table 4-7: Well Attrition/Wells at Risk for Nitrate, 1999-2018 (Page 2 of 2) | | | Nitrate | | | | | | | | | | |-----------------------------|-------------|--------------|------|------------------|------|------|----------|------|--|--|--| | Groundwater Management Zone | Basin | Basin Totals | | Point Statistics | | | Averages | | | | | | | | Total | | | | | | | | | | | | Total Wells | Statistics | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | | | | | Orange County Basins | | | | | | | | | | | | | Irvine | 120 | 68 | _ | _ | 1 | _ | 9 | _ | | | | | La Habra | 1 | _ | _ | _ | _ | _ | _ | _ | | | | | Orange County | 1,677 | 845 | 3 | 8 | 8 | _ | 57 | 20 | | | | | Santiago | 3 | 3 | _ | _ | _ | _ | _ | _ | | | | ### 4.6 Interpretive Tools Analysis Recall that the purpose of the interpretive tools is to attempt to characterize the factors that may have influenced changes in AWQ over time, and to determine whether the changes are real (systemic factors) or are artifacts of the methodology (methodological factors). One example from the 2006AWQ recomputation is an apparent increase in TDS concentrations in the OC GWMZ from 2003 to 2006. However, further analyses showed that the increase in TDS concentrations was due to methodological factors (increased monitoring in areas of higher TDS that were not historically monitored). "The ambient TDS concentration for the Orange County Groundwater Management Zone has increased from 560 mg/L (2003) to 590 mg/L (2006) to 600 mg/L (2009). ⁶ This increase in ambient TDS concentrations is...mainly due to the increased monitoring of seawater intrusion in the coastal regions of the management zone (see the Change Maps in Figures 4-10 and 4-11)." (WEI, 2011) The accessibility of on-line maps allows BMPTF members to readily confirm (or not) hypotheses about the root causes of changes in groundwater quality. In addition to the example provided above, additional data exploration is provided in this section. ### 4.6.1 Orange County Groundwater Management Zone Groundwater in the Anaheim Forebay is under the influence of surface water diverted from the Santa Ana River (WEI, 2011), as well as water from the Groundwater Replenishment System (GWRS) that is spread in recharge basins in the forebay. From 2008 through 2018, almost 504,000 AF of GWRS final product water (FPW) has been recharged in the Anaheim Forebay (See Table 4-8). The FPW has a TDS concentration around 50 mg/L and a nitrate-nitrogen concentration around 0.8 mg/L. ⁷ The interpretative tools analyses showed that five of the six key wells downgradient of the Anaheim forebay recharge locations showed very significant decreasing trends in TDS concentrations. Figure 4-5 shows a time-series chart that depicts the historical TDS concentrations in these wells (AM-13/1, AM-23/1, AM-37/1, AM-8/1, AM-11/2, SCWC-PLJ2/1) and shows the overall trend of decreasing TDS concentrations in groundwater downgradient of the recharge facilities. The trends are not as obvious in the change maps for TDS in the Orange County GMZ. This is because the data have been spatially and temporally averaged, while the key well trends reflect annualized averages (with no spatial averaging). The time series in Figure 4-5 also depicts the amount of FPW water recharged in the forebay area in million gallons per day (MGD). There were periods where no FPW water was recharged for several days at a time, including a period from June 9, 2014 through July 1, 2014 – a period of 23 days – which preceded a portion of the time series when there was a 350 to 400 mg/L increase in TDS (e.g., well number 1213206). There was no recharge of FPW between August 8, 2018 and October 2, 2018. One can
discern the beginnings of an increase in TDS through 2018. TDS data from 2019 will be analyzed to ⁷ "During 2018, GWRS Final Product Water (FPW) had an average total dissolved solids (TDS) of 53 mg/L and Nitrogen (NO₃-N) of 0.81 mg/L. These results should be representative of all GWRS water throughout its operation." Kevin O'Toole / OCWD [Via email: Mon 3/16/2020 3:00 PM] - ⁶ The trend generally continued over time with TDS concentrations leveling off at 600 mg/L. TDS ambient concentrations in the OC GMZ was estimated to be 610 mg/L in 2012, 600 mg/L in 2015; and 600 mg/L in 2018. determine if this trend continues. The general pattern in the forebay is one of dramatic improvement in groundwater due to recharge of FPW water. The changes in TDS concentrations are important and real and are another example of systemic changes in the ambient groundwater quality. Table 4-8. Production of GWRS FPW and Injection and Spreading Locations | Year | Historical Ir
Talbert | | Historical Injection at
Mid-Basin
Demonstration
Project in Santa Ana | | Water in | Spreading
Anaheim
ebay | Combined Total | | | |-------|--------------------------|---------|---|-------|----------|------------------------------|----------------|---------|--| | | MG* | AF | MG | AF | MG | AF | MG | AF | | | 2008 | 7,247 | 22,237 | | | 7,370 | 21,307 | 1,4617 | 43,544 | | | 2009 | 11,011 | 33,787 | | | 9,347 | 27,023 | 2,0358 | 60,810 | | | 2010 | 12,465 | 38,249 | | | 10,195 | 29,473 | 22,660 | 67,722 | | | 2011 | 8,385 | 25,728 | | | 14,626 | 42,283 | 23,011 | 68,011 | | | 2012 | 7,978 | 24,480 | | | 16,211 | 46,865 | 24,189 | 71,345 | | | 2013 | 9,804 | 30,084 | | | 14,693 | 42,478 | 24,498 | 72,562 | | | 2014 | 10,734 | 32,937 | | | 11,446 | 33,091 | 22,180 | 66,028 | | | 2015 | 11,820 | 36,269 | 377 | 1,156 | 19,188 | 55,472 | 31,385 | 92,897 | | | 2016 | 11,289 | 34,639 | 496 | 1,523 | 21,808 | 63,048 | 33,593 | 99,210 | | | 2017 | 8,555 | 26,250 | 506 | 1,553 | 25,063 | 72,458 | 34,124 | 100,261 | | | 2018 | 8,097 | 24,844 | 496 | 1,521 | 24,319 | 70,307 | 32,912 | 96,672 | | | Total | 107,386 | 32,9505 | 1875 | 5,753 | 99,289 | 503,805 | 283,526 | 839,063 | | ^{*}Million gallons Data provided courtesy of Kevin O'Toole / OCWD. [Via email on Mon 3/16/2020 12:37 PM] ### 4.6.2 Chino South GMZ In 2004, Regional Board amended the Basin Plan to better control the discharge of nitrogen and total dissolved solids (TDS) to local surface waterbodies and groundwater. Resolution Number R8-2004-0001 established new groundwater management zones (GMZ), revised nitrate-nitrogen and TDS objectives, revised TDS and nitrogen Waste Load Allocations (WLAs) for discharges of wastewater to the Santa Ana River and its tributaries, and revised reach designations for selected waterbodies. A water quality objective of 4.2 mg/L for nitrate-nitrogen was adopted in the Chino-South GMZ. The objective was computed as the volume-weighted average concentration of nitrate-nitrogen based on all sampling data collected for the period beginning in 1954 and ending in 1973 (e.g., objective setting period). In the Chino-South GMZ, the current ambient groundwater concentrations of nitrate-nitrogen and TDS for the most recent recomputation period are well above the water quality objectives of 4.2 mg/L, and 680 mg/L, respectively, and thus there is no assimilative capacity. The basin plan amendment that is currently in development proposes to amend Table 4-1 in the Basin Plan to revise the water quality objective for nitrate-nitrogen in the Chino-South GMZ from its current value of 4.2 mg/L to a new value of 5.0 mg/L outlined in the SARWQCB Resolution No. RB-2017-0036 (RWQCB, 2017). In developing the economic analysis for this amendment, it was demonstrated that high quality Santa Ana River water was being diverted into the Chino-South GMZ. In addition, the groundwater appears to be undergoing further soil aquifer treatment (SAT); see Figure 4-6. There is a substantial area (numbers of grid cells) of the Chino-South GMZ where nitrate-nitrogen concentrations are less than 3 or 4 mg/L, which is contributing to slight decreases in AWQ nitrogen concentrations in the Chino-South GMZ since the 2012 AWQ recomputation: - 1973 4.2 mg/L - 1997: 8.8 mg/L - 2003: 15.3 mg/L - 2006: 25.7 mg/L - 2009: 26.8 mg/L - 2012: 28.0 mg/L - 2015: 27.8 mg/L - 2018: 27.6 mg/L TDS in groundwater in the Chino South GMZ shows a similar trend, where the influx of higher quality water from the Santa Ana River into the Chino South GMZ has resulted in an area of groundwater with TDS concentrations less than 600 mg/L (Figure 4-7). The movement of high quality surface water (low concentrations of TDS and nitrate) into the Chino South GMZ is another example of a systemic change to ambient groundwater quality and an example of using the interpretive tool for data exploration. ### 4.6.3 Riverside-A GMZ In the Riverside-A GMZ, the current ambient concentrations of nitrogen and TDS for the most recent recomputation period remains below the WQOs. Thus, there is assimilative capacity for TIN and TDS in the Riverside-A GMZ. Absent a revised Nitrogen-Loss Coefficient, the incidental recharge of recycled water is likely to degrade existing water quality in the Riverside-A GMZ, but it is not likely to cause or contribute to an exceedance of the WQO for TIN (6.2 mg/L). However, the Colton Landfill appears to be contributing nitrate into Riverside-A GMZ above the WQOs and above MCLs. Locations of selected Colton Landfill monitoring wells are shown in Figure 4-8. Nitrate concentrations in monitoring wells have been increasing over time in several wells, beginning in about 2004. The saturated volume of groundwater in grid cells near the Colton Landfill is relatively small in comparison with the rest of the grid cells in Riverside-A GMZ; indeed some of the wells would be dry based on the elevation of the perforated intervals and bedrock elevation⁸. Hence, while the mass of nitrate contributed by the Colton Landfill is relatively small compared with the rest of the Riverside-A GMZ, the concentrations are locally significant. In developing contour maps for nitrate in groundwater, all existing data were honored. Four Colton Landfill monitoring wells now have the requisite number of samples to become a point statistics: CL-06: 2.3 mg/L CL-09: 17.5 mg/L CL-10S: 19.4 mg/L CL-10D: 26.6 mg/L The addition of these wells to the AWQ Recomputation has resulted in the 4 mg/L contour line being located further to the west and northwest, changing the estimated AWQ for this portion of the Riverside-A GMZ. Interestingly, the change in nitrate in the Riverside-A GMZ is both systemic and methodological. There are real increases in nitrate in groundwater due to contributions from the Colton Landfill. Recent increases in nitrate in grid cells near the landfill can also be attributed in part to wells that became eligible to be point statistics or averages during the 2015 AWQ Recomputation (Figure 4-4 from the 2015 AWQ; DBS&A. 2017). ⁸ This is an area where the aquifer geometry should be re-analyzed and perhaps updated. 78 ### **SECTION 5** ### Recommendations The Basin Plan (RWQCB, 2016a) requires the "Implementation of a watershed-wide TDS/nitrogen groundwater monitoring program" to address: - Determination of current ambient quality in GMZs - Determination of compliance with TDS and nitrate-nitrogen objectives for the GMZs - Evaluation of assimilative capacity findings for GMZs - Assessment of the effects of recharge of surface water POTW discharges on the quality of affected GMZs ### 5.1 Objective of the Triennial Ambient Water Quality Recomputation The Basin Plan (RWQCB, 2016a) states: "The determination of current ambient quality shall be accomplished using methodology consistent with that employed by the Nitrogen/TDS Task Force (20-year running averages) to develop the TDS and nitrogen WQOs included in this Basin Plan." The Basin Plan (RWQCB, 2016a) further states that groundwater monitoring should be expanded to "fill data gaps for those management zones with insufficient data to calculate TDS and nitratenitrogen historical quality and current quality." Task Force members are required to perform the recomputation of AWQ every three years, either through the coordinated monitoring plan outlined in the BMPTF agreement, as an individual agency, or as a group of agencies. ### **5.2 Change the AWQ Recomputation Period** The BMPTF should explore the possibility of revising Chapter 5 of the Basin Plan (Implementation) to merge requirements of Imported ### IN THIS SECTION Objective of the Triennial AWQ Recomputation Change the AWQ Recomputation Period and Merge Requirements of the IWRWG Improve the Data Compilation, Formatting, and QA/QC Process Review AWQ Conceptual Models Water Recharge Work Group (IWRWG) and the Waste Load Allocation model (WLAM) with the BMPTF. The BMPTF could consider performing the AWQ Recomputation every five years rather than every three years, beginning with the 2025 AWQ Recomputation. There are advantages to modifying the AWQ to a ### five-year cycle: - 1. A five-year cycle will allow for the alignment of the major regional watershed programs, including the modeling tasks performed by the IWRWG. - 2. A five-year funding and analysis period could potentially save about \$46,000 per recomputation (\$350,000 divided by 5 years rather than 3 years). Contract issuance and data request letters would occur in Spring 2025. Henceforth the AWQ Recomputation would be for years that end in "0" or "5." - 3. More significantly, a five-year cycle would allow the BMPTF members to have more time to effective manage the watershed, evaluate SNMP activities, and fulfill the requirements of the 2018 Recycled Water Policy. ⁹ This plan would allow two additional years in each cycle to perform the following: **"6.2.6. Data assessment**. The regional water boards,
in consultation with stakeholders, shall assess and review monitoring data generated from these plans every five years, unless an alternate timeline has been established in a basin plan amendment. This assessment shall include an evaluation of: - observed trends in water quality data as compared with trends predicted in the salt and nutrient management plan; - the ability of the monitoring network to adequately characterize groundwater quality in the basin; - potential new data gaps; - groundwater quality impacts predicted in the salt and nutrient management plan based on most recent trends and any relied-upon models, including an evaluation of the ability of the model to simulate groundwater quality; - available assimilative capacity based on observed trends and most recent water quality data; and - projects that are reasonably foreseeable at the time of this data assessment but may not have been when the salt and nutrient management was prepared or last updated. "6.2.7. The regional water boards, in consultation with stakeholders, shall use the results of these periodic assessments to update basin evaluations of available assimilative capacity, projected trends, and concentrations of salts and nutrients in groundwater, and then determine whether potential updates or revisions to the salt and nutrient management plan may be warranted as a result of the data assessment or to make the plan consistent with the Policy." ### 5.3 Improve the Data Compilation, Formatting, and QA/QC Process On any data-intensive project, data compilation, formatting, and QA/QC are difficult and time- $^{{}^9}https://www.waterboards.ca.gov/board_decisions/adopted_orders/resolutions/2018/121118_7_final_amendment_oal.pdf$ 81 consuming work elements. The following are recommendations to streamline the workflow and improve the processes, resulting in a high-quality AWQ database. These were suggestions posed in the 2015 AWQ Recomputation. An assessment of how well these recommendations were administered is provided below: ### 2015 Recommendation # Realign the request for proposal (RFP) and proposal due date so that the selected consultant begins work on the data compilation task on April 1, 2019 instead of July 1, 2019, with a goal of collecting all of the data from all of the agencies by June 1, 2019. This will still provide the agencies with time to acquire and load data up through December 31, 2018 and will allow the consultant to begin analyzing all of the data in June of each year, rather than August or September. # Each agency is provided a template that defines the data format in order to automate/facilitate the data upload into the AWQ database. Because the submitted data do not always follow the template, it is recommended that the agency staff responsible for fulfilling data requests meet with SAWPA staff prior to the next AWQ determination with a goal of being able to produce a high-quality electronic data deliverable (EDD) by June 1, 2019. ### **Outcome and Refined Recommendations** Outcome: The 2015 recommendations were mostly followed. The data compilation request to agencies went out on April 24, 2019. It took the majority of agencies two months to provide the requested data. Refined recommendations: Realign the data request to notify agencies the following week after the consultant is awarded the project in order to give agencies an early start to begin work on the data compilation task. A follow up notification for the data request will be provided 30 days after the initial data request with a June 1 deadline. This should provide the agencies adequate time to compile the data, ask questions, and allow the consultant to verify the formatting of the data provided. Outcome: The primary challenge faced was more than a third of agencies provided data in a format that didn't comply with the data request's accompanying EDD and guidance. As a result, it took longer than anticipated to format and compile the data into the database to begin analyzing the data. Data didn't get analyzed until September 2019, later than anticipated from the 2015 recommendation. Refined recommendations: Since the data request doesn't substantially change over time, the same data request files and guidance can be used in each data request. An alternative recommendation to improve the quality of the formatted data provided and speed up the delivery data process in addition to providing more time for the agencies to compile the data would be for the consultant to develop an online web tool where data can be uploaded. This web tool will parse the data provided and if the data is not in the format requested, it will provide feedback automatically to the data uploader to assist them in formatting the data correctly. This | | web tool would be used for all future data uploads and may allow for further integration of other useful tools (e.g. interactive interpretative tools) to be fully online. | |---|--| | As part of the EDD template, data providers are encouraged to complete the lookup table that links the WELL_ID with the owner/local name. Any changes to the WELL_INFO_Table, including well status (active, inactive, destroyed, etc.), should be carefully updated. | Outcome: A lookup table was not provided in the EDD for the 2018 data request. However, in most cases, agencies did provide updated well status information for the wells that they provided data. Refined recommendations: Update the EDD template to include the lookup table and functions that will link the Well_ID with the owner/local name. An alternative solution is mentioned above using a web tool instead of a spreadsheet. | ### **5.4** Review AWQ Conceptual Models The BMPTF may wish to continue funding the AWQ Recomputation at its current annual level. These funds and the period from June 30, 2020 through Spring 2025 could be used to further assess hydrogeological conceptual models, aquifer properties, and groundwater basin management plans and strategies. # 5.5 Consider Pursuing Grant Funding to Perform Supplemental AWQ Tasks The BMPTF may wish to pursue grant funding for supplemental work that has been identified in previous AWQ recomputations by identifying grant programs that might be applicable. Such work may include: - Update conceptual models (Section 5.4)¹⁰ - The sampling of existing wells in key locations that fulfill the requirements of the AWQ monitoring program and allow for the continued recomputation of AWQ and AC. - To the extent that portions of the GMZs do not have adequate spatial coverage, even with the inclusion of data from existing wells, the BMPTF may consider the siting and installation of new monitoring wells. The physical models of the groundwater management zones (GMZs) that are used to calculate the ambient water quality (AWQ) were developed in the Phase 2A TIN/TDS Study published in July 2000. This study included literature reviews that were current as of the late 1990s. In the intervening 20 years, hundreds of wells have been drilled, groundwater models have been developed and updated, and new hydrogeologic studies have been performed in the GMZs throughout the Santa Ana River Watershed, ultimately improving the understanding of aquifer properties and aquifer geometry of the GMZs. Potential improvements to the physical models of the GMZ include updates to: the groundwater basin boundaries, layer thicknesses, distributions of specific yield, water balance components, e.g., deep percolation of applied water, incidental recharge of recycled water, subsurface inflows and outflows, mountain front recharge, stormwater capture, etc. 83 - Work with the State Water Board to align the AWQ database with requirements from the Recycled Water Policy, including reporting periods. - Work with the State Water Board to develop and potentially implement Water Board methodologies for determining "at-risk" public water systems, domestic wells, and state small water systems (Safe and Affordable Funding for Equity and Resilience [SAFER] Program). ### 5.6 Response to Regional Board Request On June 22, 2020, the Regional Board submitted comments to the Task Force on the Draft Technical Memorandum that contained the Recomputation of Ambient Water Quality for the Period 1999 to 2018. In their comment letter, the Regional Board urged the Task Force to evaluate the existing Salt and Nitrogen Management Plan contained in the Water Quality Control Plan for the Santa Ana Region as compared to provisions contained in the State Water Board's updated 2019 Recycled Water Policy. Under the 2019 Recycled Water Policy, salt and nutrient management plans adopted prior to April 8, 2019 must be evaluated by April 8, 2024. The evaluation includes assessing data to identify the following: - Observed trends in water quality data as compared with trends predicted in the salt and nutrient management plan - The ability of the monitoring network to adequately characterize groundwater quality in the basin - Potential new data gaps - Groundwater quality impacts predicted in the salt and nutrient management plan based on most recent trends and any relied-upon models, including an evaluation of the ability of the model to simulate groundwater quality - Available assimilative capacity based on observed trends and most recent water quality data; and
- Projects that are reasonably foreseeable at the time of this data assessment but may not have been when the salt and nutrient management plan was prepared or last updated. Based on the results of this assessment, the Regional Board (in consultation with stakeholders) needs to consider if an update to an existing salt and nutrient management plan is warranted to make it consistent with the 2019 Recycled Water Policy. The next Recomputation of Ambient Water Quality will be for the 20-year period 2002-2021, and will thus need to be performed in 2022 and 2023. The timing of this next Recomputation period matches well with the 2024 deadline for evaluation of the existing salt and nitrogen management plan, and should address the data assessment and evaluation requirements as spelled out in the 2019 Recycled Water Policy. To ensure that the next Recomputation addresses all of the assessment requirements in the 2019 Recycled Water Policy, the Task Force will convene a scoping committee made up of interested Task Force members - including Regional Board staff. The purpose of the scoping committee is to evaluate the Task Force's current recomputation approach as compared to the data assessment needs in the 2019 Recycled Water Policy, and identify additional assessments, data gaps, or special studies that may need to occur over the next several years so that the April 8, 2024 data assessment requirement can be met. The scoping committee will bring forward proposed recommendations to the Task Force in a timely manner for consideration. IN THIS SECTION Publications and References in Technical Developing this Memorandum Reports that Served as ### **SECTION 6** ## References - DBS&A. 2017. Recomputation of ambient water quality in the Santa Ana Watershed for the period 1996 to 2015. Prepared for the Santa Ana Watershed Project Authority, Basin Monitoring Program Task Force. September 2017. - Gibbons, R.D. 1994. Statistical methods for groundwater monitoring. John Wiley & Sons, New York. - Gibbons, R.D. and D.E. Coleman. 2001. Statistical methods for detection and quantification of environmental contamination. John Wiley & Sons, New York. - Little Hoover Commission. 2009. Cleaner water: Improving performance and outcomes at the State Water Boards. Available at http://www.lhc.ca.gov/studies/195/report195.pdf>. January 2009. - Montgomery Watson and M.J. Wildermuth (Montgomery Watson and Wildermuth). 1994. Final Task 6 memorandum: Development of three dimensional groundwater model. March 1994. - Regional Water Quality Control Board, State of California, Santa Ana Region (RWQCB). 2004. Resolution No. R8-2004-0001 amending the water quality control plan for the Santa Ana River Basin to incorporate an updated total dissolved solids (TDS) and nitrogen management plan for the Santa Ana Region including revised groundwater subbasin boundaries, revised TDS and nitrate-nitrogen quality objectives for groundwater, revised TDS and nitrogen wasteload allocations, and revised reach designations, TDS and nitrogen objectives and beneficial uses for specific surface waters. - Rice, E.W., R.B. Baird, and A.D. Eaton (Eds.). 2017. Standard methods for the examination of water and wastewater. 23rd edition. American Water Works Association/American Public Works Association/Water Environment Federation. - RWQCB. 2017. Water quality control plan (Basin Plan) for the Santa Ana River Basin (SARWQCB Resolution No. RB-2017-0036). January 1995. Updated February 2017. - RWQCB. 2016a. Water quality control plan (Basin Plan) for the Santa Ana River Basin. January 1995. Updated February 2016. - RWQCB. 2016b. Data request for the recomputation of ambient water quality (nitrate and TDS) for management zones in the Santa Ana River Watershed as required by the 2004 amendment to the Basin Plan. - Santa Ana Watershed Project Authority (SAWPA). 2011. SAWPA workplan, April 2011. Available at http://www.sawpa.org/wp-content/uploads/2012/05/SAWPA-Strategic-Plan-Vision-Mission-Values-Goals-April-2011.pdf. - Shapiro, S.S. and M.B. Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika 52:591-611. - Task Force. 2004. Agreement to form a task force to conduct a basin monitoring program for nitrogen and total dissolved solids in the Santa Ana River Watershed. Basin Monitoring Program. Executed on August 10, 2004. - Tetra Tech, Inc. 2010. Stringfellow 2006-2007 Biennial Ground Water Remedy Effectiveness Evaluation Report. Prepared for California Environmental Protection Agency Department of Toxic Substances Control Stringfellow Branch. December 2010. - WEI. 2000. Technical memorandum: TIN/TDS Phase 2A, Tasks 1 through 5, TIN/TDS study of the Santa Ana Watershed. July 2000. - WEI. 2003. Optimum Basin Management Program, Chino Basin Dry-Year Yield Program: Preliminary modeling report. Prepared for the Chino Basin Watermaster. - WEI. 2007. 2007 CBWM groundwater model documentation and evaluation of the Peace II project description. - WEI. 2011. Recomputation of ambient water quality in the Santa Ana Watershed for the period 1990 to 2009. Prepared for the Santa Ana Watershed Project Authority, Basin Monitoring Program Task Force. August 2011. - WEI. 2014. Recomputation of ambient water quality in the Santa Ana Watershed for the period 1993 to 2012. Prepared for the Santa Ana Watershed Project Authority, Basin Monitoring Program Task Force. August 2014. - WEI. 2015. 2013 Chino Basin groundwater model update and recalculation of safe yield pursuant to the Peace Agreement. ### **APPENDIX A** # **Electronic Deliverables** Appendix A files are provided online hosted on a FTP site. This FTP also contains an electronic version of this report. ### **APPENDIX B** # Packets for Subwatershed Areas ### **APPENDIX B - TABLE OF CONTENTS** Attachment B1 – Arlington and Riverside-D GMZs Interpretative Tools Summary – Arlington and Riverside-D GMZs - B1-1 Groundwater Storage and Elevation Contours Fall 2018 - B1-2 NO₃-N Concentration and Contour Map - **B1-3 TDS Concentration and Contour Map** - B1-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) - B1-5 TDS Concentration Change (1996-2015 to 1999-2018) #### Attachment B2 – Beaumont GMZ Interpretative Tools Summary – Beaumont GMZ - B2-1 Groundwater Storage and Elevation Contours Fall 2018 - B2-2 NO₃-N Concentration and Contour Map - **B2-3 TDS Concentration and Contour Map** - B2-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) - B2-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B3 - Bunker Hill-A and Bunker Hill-B GMZs Interpretative Tools Summary – Bunker Hill-A and Bunker Hill-B GMZs - B3-1 Groundwater Storage and Elevation Contours Fall 2018 - B3-2 NO₃-N Concentration and Contour Map - B3-3 TDS Concentration and Contour Map - B3-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) - B3-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B4 - Canyon GMZ Interpretative Tools Summary - Canyon GMZ B4-1 Groundwater Storage and Elevation Contours Fall 2018 B4-2 NO₃-N Concentration and Contour Map **B4-3 TDS Concentration and Contour Map** B4-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B4-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B5 – Chino-North GMZ Interpretative Tools Summary - Chino-North GMZ B5-1 Groundwater Storage and Elevation Contours Fall 2018 B5-2a,b,c NO₃-N Concentration and Contour Map B5-3a,b,c TDS Concentration and Contour Map B5-4a,b,c NO₃-N Concentration Change (1996-2015 to 1999-2018) B5-5a,b,c TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B6 - Chino-South and Chino-East GMZs Interpretative Tools Summary – Chino-South and Chino-East GMZs B6-1 Groundwater Storage and Elevation Contours Fall 2018 B6-2 NO₃-N Concentration and Contour Map B6-3 TDS Concentration and Contour Map B6-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B6-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B7 – Coldwater and Bedford GMZs Interpretative Tools Summary – Coldwater and Bedford GMZs B7-1 Groundwater Storage and Elevation Contours Fall 2018 B7-2 NO₃-N Concentration and Contour Map **B7-3 TDS Concentration and Contour Map** B7-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B7-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B8 – Cucamonga GMZ Interpretative Tools Summary – Cucamonga GMZ B8-1 Groundwater Storage and Elevation Contours Fall 2018 B8-2 NO₃-N Concentration and Contour Map B8-3 TDS Concentration and Contour Map B8-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B8-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B9 – Elsinore GMZ Interpretative Tools Summary – Elsinore GMZ B9-1 Groundwater Storage and Elevation Contours Fall 2018 B9-2 NO₃-N Concentration and Contour Map **B9-3 TDS Concentration and Contour Map** B9-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B9-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B10 – Lytle GMZ Interpretative Tools Summary – Lytle GMZ B10-1 Groundwater Storage and Elevation Contours Fall 2018 B10-2 NO₃-N Concentration and Contour Map **B10-3 TDS Concentration and Contour Map** B10-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B10-5 TDS Concentration Change (1996-2015 to 1999-2018) Attachment B11 – Orange County and Irvine GMZs Interpretative Tools Summary – Orange County and Irvine GMZs B11-1a,b Groundwater Storage and Elevation Contours Fall 2018 B11-2a,b NO₃-N Concentration and Contour Map B11-3a,b TDS Concentration and Contour Map B11-4a,b NO₃-N Concentration Change (1996-2015 to 1999-2018) B11-5a,b TDS Concentration Change (1996-2015 to 1999-2018) Attachment B12 - Rialto and Colton GMZs Interpretative Tools Summary – Rialto and Colton GMZs B12-1 Groundwater Storage and Elevation
Contours Fall 2018 B12-2 NO₃-N Concentration and Contour Map **B12-3 TDS Concentration and Contour Map** B12-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B12-5 TDS Concentration Change (1996-2015 to 1999-2018) Attachment B13 – Riverside-A, -B, -C, -E, and -F GMZs Interpretative Tools Summary – Riverside-A, -B, -C, -E, and -F GMZs B13-1 Groundwater Storage and Elevation Contours Fall 2018 B13-2 NO₃-N Concentration and Contour Map **B13-3 TDS Concentration and Contour Map** B13-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B13-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B14 – San Jacinto GMZ Interpretative Tools Summary – San Jacinto GMZ B14-1 Groundwater Storage and Elevation Contours Fall 2018 B14-2 NO₃-N Concentration and Contour Map **B14-3 TDS Concentration and Contour Map** B14-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B14-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B15 – San Jacinto Upper and Lower Pressure GMZs Interpretative Tools Summary – San Jacinto Upper and Lower Pressure GMZs B15-1 Groundwater Storage and Elevation Contours Fall 2018 B15-2 NO₃-N Concentration and Contour Map **B15-3 TDS Concentration and Contour Map** B15-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B15-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B16 - San Timoteo GMZ Interpretative Tools Summary – San Timoteo GMZ B16-1 Groundwater Storage and Elevation Contours Fall 2018 B16-2 NO₃-N Concentration and Contour Map **B16-3 TDS Concentration and Contour Map** B16-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B16-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B17 - Temescal GMZ Interpretative Tools Summary – Temescal GMZ B17-1 Groundwater Storage and Elevation Contours Fall 2018 B17-2 NO₃-N Concentration and Contour Map B17-3 TDS Concentration and Contour Map B17-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B17-5 TDS Concentration Change (1996-2015 to 1999-2018) ### Attachment B18 – Yucaipa GMZ Interpretative Tools Summary – Yucaipa GMZ B18-1 Groundwater Storage and Elevation Contours Fall 2018 B18-2 NO₃-N Concentration and Contour Map **B18-3 TDS Concentration and Contour Map** B18-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B18-5 TDS Concentration Change (1996-2015 to 1999-2018) # Attachment B1 Arlington and Riverside-D GMZs ### **Attachment Contents:** - **B1-1 Groundwater Storage and Elevation Contours Fall 2018** - **B1-2 NO₃-N Concentration and Contour Map** - **B1-3 TDS Concentration and Contour Map** - B1-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) - **B1-5 TDS Concentration Change (1996-2015 to 1999-2018)** TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | | | |--------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------|--|--| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | | Arlington | 980 | 983 | ? | 1020 | 960 | 1020 | 1030 | 1020 | 1020 | 0 | None (-40) | | | | Riverside-D | 810 | 812 | ? | ? | ? | ? | ? | ? | ? | ? | ? | | | | | | | | I | Nitrate as Nitrogen (| (mg/L) | | | | | | | | | Arlington | 10.0 | 25.5 | ? | 26.0 | 20.4 | 18.1 | 18.3 | 17.8 | 16.6 | -1.2 | None (-6.6) | | | | Riverside-D | 10.0 | 19.5 | ? | ? | ? | ? | ? | ? | ? | ? | ? | | | ### **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 AMBIENT WATER QUALITY (1999 TO 2018) Interpretive Tools Summary Arlington and Riverside-D GMZs Attachment B1 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B1-1_Arling_F2018_WL ## **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Santa Ana River Watershed WATER SYSTEMS CONSULTING, INC. File Name: Figure_B1-2_Arling_N_grid Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Santa Ana River Watershed WATER SYSTEMS CONSULTING, INC. File Name: Figure_B1-3_Arling_TDS_grid Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 # **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B1-5_Arling_TDS_change Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 Recomputation of Ambient Water Quality for the Period 1999 to 2018 **Attachment B2** **Beaumont GMZ** ## **Attachment Contents:** - **B2-1 Groundwater Storage and Elevation Contours Fall 2018** - B2-2 NO₃-N Concentration and Contour Map - **B2-3 TDS Concentration and Contour Map** - B2-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) - **B2-5 TDS Concentration Change (1996-2015 to 1999-2018)** ## TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | |-------------------------------|----------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------| | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | Beaumont "max benefit" | 330 | 233 | 290 | 260 | 260 | 280 | 290 | 290 | 280 | -10 | 50 | | Beaumont "antideg" | 230 | 233 | 290 | 260 | 260 | 280 | 290 | 290 | 280 | -10 | None (-50) | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | | Beaumont "max benefit" | 5.0 | 1.5 | 2.6 | 2.0 | 1.6 | 2.5 | 2.9 | 2.9 | 2.7 | -0.2 | 2.3 | | Beaumont "antideg" | 1.5 | 1.5 | 2.6 | 2.0 | 1.6 | 2.5 | 2.9 | 2.9 | 2.7 | -0.2 | None (-1.2) | ## **SAWPA Basin Monitoring Program Task Force** WATER SYSTEMS CONSULTING, INC. File Name: Figure_B2-1_Beaumont_F2018_WL **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B2-2_Beaumont_N_grid **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B2-3_Beaumont_TDS_grid **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Recomputation of Ambient Water Quality for the Period 1999 to 2018 Recomputation of Ambient Water Quality for the Period 1999 to 2018 # Attachment B3 Bunker Hill-A and Bunker Hill-B GMZs ## **Attachment Contents:** - **B3-1 Groundwater Storage and Elevation Contours Fall 2018** - **B3-2 NO₃-N Concentration and Contour Map** - **B3-3 TDS Concentration and Contour Map** - B3-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) - **B3-5 TDS Concentration Change (1996-2015 to 1999-2018)** ## TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | |--------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | Bunker Hill-A | 310 | 313 | 350 | 320 | 330 | 340 | 340 | 330 | 330 | 0 | None (-20) | | Bunker Hill-B | 330 | 332 | 260 | 280 | 280 | 270 | 280 | 290 | 280 | -10 | 50 | | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | Bunker Hill-A | 2.7 | 2.7 | 4.5 | 4.3 | 4.0 | 4.0 | 4.0 | 3.9 | 3.8 | -0.1 | None (-1.1) | | Bunker Hill-B | 7.3 | 7.3 | 5.5 | 5.8 | 5.4 | 5.4 | 5.6 | 5.8 | 5.8 | 0.0 | 1.5 | # **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 AMBIENT WATER QUALITY (1999 TO 2018) Interpretive Tools Summary Bunker Hill-A and Bunker Hill-B GMZs Attachment B3 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B3-1_BH_F2018_WL **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B3-2_BH_N_grid_v2 0 0.4 0.8 1.6 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B3-3_BH_TDS_grid_v2 Date:
4/2/2020 0 0.4 0.8 1.6 Projection: Transverse Mercator Datum: North American 1983 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 Attachment B3-4 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B3-5_BH_TDS_change_v2 0 0.4 0.8 1.6 Recomputation of Ambient Water Quality for the Period 1999 to 2018 Recomputation of Ambient Water Quality for the Period 1999 to 2018 ## **Attachment B4** **Canyon GMZ** ## **Attachment Contents:** **B4-1 Groundwater Storage and Elevation Contours Fall 2018** **B4-2 NO₃-N Concentration and Contour Map** **B4-3 TDS Concentration and Contour Map** B4-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B4-5 TDS Concentration Change (1996-2015 to 1999-2018)** ## TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | |--------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | Canyon | 230 | 234 | 220 | 420 | 370 | 420 | 340 | 380 | 370 | -10 | None (-140) | | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | Canyon | 2.5 | 2.5 | 1.6 | 2.1 | 1.9 | 2.7 | 2.0 | 2.0 | 1.7 | -0.3 | 0.8 | **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B4-1_Canyon_F2018_WL 0.375 0.75 Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B4-2_Canyon_N_grid # **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B4-3_Canyon_TDS_grid 0.375 0.75 # **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 0.375 0.75 Recomputation of Ambient Water Quality for the Period 1999 to 2018 0.375 0.75 Recomputation of Ambient Water Quality for the Period 1999 to 2018 Recomputation of Ambient Water Quality for the Period 1999 to 2018 ## **Attachment B5** ## **Attachment Contents:** **B5-1 Groundwater Storage and Elevation Contours Fall 2018** B5-2a,b,c NO₃-N Concentration and Contour Map **B5-3a,b,c TDS Concentration and Contour Map** B5-4a,b,c NO₃-N Concentration Change (1996-2015 to 1999-2018) B5-5a,b,c TDS Concentration Change (1996-2015 to 1999-2018) TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | |-------------------------------|----------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------| | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | Chino-North "max benefit" | 420 | 260 | 300 | 320 | 340 | 340 | 350 | 360 | 350 | -10 | 70 | | Chino 1 "antideg" | 280 | 280 | 310 | 330 | 340 | 340 | 350 | 350 | 340 | -10 | None (-60) | | Chino 2 "antideg" | 250 | 250 | 300 | 340 | 360 | 360 | 380 | 380 | 380 | 0 | None (-130) | | Chino 3 "antideg" | 260 | 260 | 280 | 280 | 310 | 320 | 320 | 320 | 320 | 0 | None (-60) | | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | Chino-North "max benefit" | 5.0 | 3.7 | 7.4 | 8.7 | 9.7 | 9.5 | 10.0 | 10.3 | 10.3 | 0 | None (-5.3) | | Chino 1 "antideg" | 5.0 | 5.0 | 8.4 | 8.9 | 9.3 | 9.1 | 10.0 | 10.5 | 10.4 | -0.1 | None (-5.4) | | Chino 2 "antideg" | 2.9 | 2.9 | 7.2 | 9.5 | 10.7 | 10.3 | 10.7 | 10.9 | 10.9 | 0 | None (-8) | | Chino 3 "antideg" | 3.5 | 3.5 | 6.3 | 6.8 | 8.2 | 8.4 | 8.5 | 8.9 | 9.2 | 0.3 | None (-5.7) | # **SAWPA Basin Monitoring Program Task Force** WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-1a_Chino-N_F2018_WL **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-2a_Chino-N_N1_grid_v2 0 0.4 0.8 1.6 Projection: Transverse Mercator Datum: North American 1983 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-2b_Chino-N_N2_grid_v2 0 0.25 0.5 0 0.4 0.8 1.6 Projection: Transverse Mercator Datum: North American 1983 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 Layer 2 Chino-North GMZ WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-2c_Chino-N_N3_grid_v2 0 0.4 0.8 1.6 Projection: Transverse Mercator Datum: North American 1983 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 Layer 3 Chino-North GMZ WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-3a_Chino-N_T1_grid_v2 0 0.4 0.8 1.6 Projection: Transverse Mercator Datum: North American 1983 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 Layer 1 **Chino-North GMZ** WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-3b_Chino-N_T2_grid_v2 0 0.25 0.5 0 0.4 0.8 1.6 Projection: Transverse Mercator Datum: North American 1983 Units: Meter **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 Layer 2 Chino-North GMZ WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-3c_Chino-N_T3_grid_v2 0 0.25 0.5 0 0.4 0.8 1.6 Projection: Transverse Mercator Datum: North American 1983 Units: Meter **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 Layer 3 Chino-North GMZ WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-4a_Chino-N_N1_Change_v2 0 0.4 0.8 1.6 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-4b_Chino-N_N2_Change_v2 0 0.4 0.8 1.6 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-4c_Chino-N_N3_Change_v2 0 0.4 0.8 1.6 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-5a_Chino-N_T1_Change_v2 0 0.4 0.8 1.6 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 Chino-North GMZ WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-5b_Chino-N_T2_Change_v2 0 0.4 0.8 1.6 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 Chino-North GMZ WATER SYSTEMS CONSULTING, INC. File Name: Figure_B5-5c_Chino-N_T3_Change_v2 0 0.4 0.8 1.6 Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 Chino-North GMZ Recomputation of Ambient Water Quality for the Period 1999 to 2018 # Attachment B6 Chino-South and Chino-East GMZs # **Attachment Contents:** **B6-1 Groundwater Storage and Elevation Contours Fall 2018** **B6-2 NO₃-N Concentration and Contour Map** **B6-3 TDS Concentration and Contour Map** B6-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B6-5 TDS Concentration Change (1996-2015 to 1999-2018)** ### TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from 2015 to 2018 | Assimilative
Capacity | | | |--------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------|--|--| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | | Chino-East | 730 | 733 | 760 | 620 | 650 | 770 | 770 | 840 | 840 | 0 | None (-110) | | | | Chino-South | 680 | 676 | 720 | 790 | 940 | 980 | 990 | 940 | 920 | -20 | None (-240) | | | | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | | | Chino-East | 10.0 | 13.3 | 29.1 | 9.6 | 12.7 | 15.7 | 21.0 | 22.0 | 22.0 | 0 | None (-12) | | | | Chino-South | 4.2 | 4.2 | 8.8 | 15.3 | 25.7 | 26.8 | 28.0 | 27.8 | 27.6 | -0.2 | None (-23.4) | | | # **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B6-1_ChinoSE_F2018_WL **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B6-2_ChinoSE_N_grid Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B6-3_ChinoSE_TDS_grid Projection: Transverse Mercator Datum: North American 1983 **Recomputation of
Ambient Water Quality** for the Period 1999 to 2018 File Name: Figure_B6-4_ChinoSE_N_change_v2 Attachment B6-4 File Name: Figure_B6-5_ChinoSE_TDS_change_v2 Attachment B6-5 Recomputation of Ambient Water Quality for the Period 1999 to 2018 # Attachment B7 Coldwater and Bedford GMZs # **Attachment Contents:** - **B7-1 Groundwater Storage and Elevation Contours Fall 2018** - B7-2 NO₃-N Concentration and Contour Map - **B7-3 TDS Concentration and Contour Map** - B7-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) - **B7-5 TDS Concentration Change (1996-2015 to 1999-2018)** ### TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from 2015 to 2018 | Assimilative
Capacity | | | |--------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------|--|--| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | | Bedford | ? | ? | ? | 740 | ? | ? | ? | ? | ? | ? | ? | | | | Coldwater | 380 | 381 | 380 | 400 | 420 | 440 | 440 | 460 | 450 | -10 | None (-70) | | | | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | | | Bedford | ? | ? | ? | 2.8 | ? | ? | ? | ? | ? | ? | ? | | | | Coldwater | 1.5 | 1.5 | 2.6 | 2.4 | 2.6 | 2.8 | 2.8 | 2.2 | 2.3 | 0.1 | None (-0.8) | | | # **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 AMBIENT WATER QUALITY (1999 TO 2018) Interpretive Tools Summary Coldwater and Bedford GMZs Attachment B7 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B7- **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Arlington and Riverside-D GMZs Santa Ana River Watershed Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 **Coldwater and Bedford GMZ** Santa Ana River Watershed Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 Recomputation of Ambient Water Quality for the Period 1999 to 2018 # **Attachment B8** **Cucamonga GMZ** # **Attachment Contents:** **B8-1 Groundwater Storage and Elevation Contours Fall 2018** B8-2 NO₃-N Concentration and Contour Map **B8-3 TDS Concentration and Contour Map** B8-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B8-5 TDS Concentration Change (1996-2015 to 1999-2018)** TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from 2015 to 2018 | Assimilative
Capacity | |-------------------------------|----------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------| | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | Cucamonga "max benefit" | 380 | 212 | 260 | 250 | 250 | 250 | 260 | 260 | 260 | 0 | 120 | | Cucamonga "antideg" | 210 | 212 | 260 | 250 | 250 | 250 | 260 | 260 | 260 | 0 | None (-50) | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | | Cucamonga "max benefit" | 5.0 | 2.4 | 4.4 | 4.3 | 4.0 | 4.1 | 4.1 | 4.3 | 4.7 | 0.4 | 0.3 | | Cucamonga "antideg" | 2.4 | 2.4 | 4.4 | 4.3 | 4.0 | 4.1 | 4.1 | 4.3 | 4.7 | 0.4 | None (-2.3) | # **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B8-1_Cucamonga_F2018_WL Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B8-2_Cucamonga_N_grid 0.425 0.85 # **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 # **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 0.425 0.85 Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 0.425 0.85 Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Recomputation of Ambient Water Quality for the Period 1999 to 2018 # **Attachment B9** **Elsinore GMZ** # **Attachment Contents:** **B9-1 Groundwater Storage and Elevation Contours Fall 2018** **B9-2 NO₃-N Concentration and Contour Map** **B9-3 TDS Concentration and Contour Map** B9-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B9-5 TDS Concentration Change (1996-2015 to 1999-2018)** ### TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | |-------------------------------|----------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------| | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | Elsinore | 480 | 476 | 480 | 460 | 470 | 470 | 490 | 490 | 490 | 0 | None (-10) | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | | Elsinore | 1.0 | 1.0 | 2.6 | 2.4 | 2.4 | 2.2 | 2.1 | 2.2 | 2.3 | 0.1 | None (-1.3) | Recomputation of Ambient Water Quality for the Period 1999 to 2018 AMBIENT WATER QUALITY (1999 TO 2018) Interpretive Tools Summary Elsinore GMZ Attachment B9 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B9-1_Elsinore_F2018_WL **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B9-2_Elsinore_N_grid_v2 Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 # **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B9-3_Elsinore_TDS_grid # **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 0.45 0.9 Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 Recomputation of Ambient Water Quality for the Period 1999 to 2018 # Attachment B10 Lytle GMZ # **Attachment Contents:** **B10-1 Groundwater Storage and Elevation Contours Fall 2018** **B10-2 NO₃-N Concentration and Contour Map** **B10-3 TDS Concentration and Contour Map** B10-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B10-5 TDS Concentration Change (1996-2015 to 1999-2018)** ### TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from 2015 to 2018 | Assimilative
Capacity | |-------------------------------|----------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------| | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | Lytle | 260 | 264 | 240 | 230 | 230 | 240 | 240 | 240 | 240 | 0 | 20 | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | | Lytle | 1.5 | 1.5 | 2.8 | 2.7 | 2.7 | 2.6 | 2.5 | 2.4 | 2.4 | 0.0 | None (-0.9) | # **SAWPA Basin Monitoring Program Task Force** WATER SYSTEMS CONSULTING, INC. File Name: Figure_B10-1_Lytle_F2018_WL Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B10-2_Lytle_N_grid # **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B10-3_Lytle_TDS_grid Recomputation of Ambient Water Quality for the Period 1999 to 2018 0.425 0.85 Projection: Transverse
Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 0.425 0.85 Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 Recomputation of Ambient Water Quality for the Period 1999 to 2018 # Attachment B11 Orange County and Irvine GMZs ### **Attachment Contents:** **B11-1a,b Groundwater Storage and Elevation Contours Fall 2018** B11-2a,b NO₃-N Concentration and Contour Map **B11-3a,b TDS Concentration and Contour Map** B11-4a,b NO₃-N Concentration Change (1996-2015 to 1999-2018) B11-5a,b TDS Concentration Change (1996-2015 to 1999-2018) ### TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from 2015 to 2018 | Assimilative
Capacity | | | | |--------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------|--|--|--| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | | | Irvine | 910 | 908 | 910 | 880 | 920 | 910 | 940 | 920 | 880 | -40 | 30 | | | | | Orange County | 580 | 585 | 560 | 560 | 590 | 600 | 610 | 600 | 600 | 0 | None (-20) | | | | | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | | | | Irvine | 5.9 | 5.9 | 7.4 | 6.5 | 6.5 | 6.7 | 6.7 | 6.4 | 6.4 | 0.0 | None (-0.5) | | | | | Orange County | 3.4 | 3.4 | 3.4 | 3.1 | 3.0 | 3.0 | 2.9 | 3.0 | 3.0 | 0.0 | 0.4 | | | | Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B11-1a_OC_F2018_WL_L1 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Fall 2018 - Orange County and Irvine GMZs WATER SYSTEMS CONSULTING, INC. File Name: Figure_B11-1b_OC_F2018_WL_L2 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Fall 2018 - Orange County and Irvine GMZs WATER SYSTEMS CONSULTING, INC. File Name: Figure_B11-4a_OC_F2018_N1_Chg_v2 0 0.5 1 2 Km Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 **Orange County and Irvine GMZs** WATER SYSTEMS CONSULTING, INC. File Name: Figure_B11-4b_OC_F2018_N2_Chg_v2 0 0.5 1 2 Km Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 **Orange County and Irvine GMZs** Attachment B11-5a WATER SYSTEMS CONSULTING, INC. File Name: Figure_B11-5b_OC_F2018_T2_Chg_v2 0 0.5 1 2 Km Units: Meter Recomputation of Ambient Water Quality for the Period 1999 to 2018 **Orange County and Irvine GMZs** Recomputation of Ambient Water Quality for the Period 1999 to 2018 # Attachment B12 Rialto and Colton GMZs ### **Attachment Contents:** **B12-1 Groundwater Storage and Elevation Contours Fall 2018** B12-2 NO₃-N Concentration and Contour Map **B12-3 TDS Concentration and Contour Map** B12-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B12-5 TDS Concentration Change (1996-2015 to 1999-2018)** TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from 2015 to 2018 | Assimilative
Capacity | | | | |--------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------|--|--|--| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | | | Colton | 410 | 407 | 430 | 430 | 450 | 430 | 440 | 480 | 490 | 10 | None (-80) | | | | | Rialto | 230 | 230 | 230 | 220 | 230 | 230 | 230 | 240 | 240 | 0 | None (-10) | | | | | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | | | | Colton | 2.7 | 2.7 | 2.9 | 2.9 | 2.9 | 2.8 | 2.7 | 3.3 | 3.3 | 0.0 | None (-0.6) | | | | | Rialto | 2.0 | 2.0 | 2.7 | 2.6 | 2.9 | 3.1 | 3.2 | 3.4 | 3.5 | 0.1 | None (-1.5) | | | | **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B12-1_Rialto_and_Colton_F2018_WL ## **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B12-2_Rialto_and_Colton_N_grid Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 ### **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B12-3_Rialto_and_Colton_TDS_grid ## **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B12-4_Rialto_and_Colton_N_change Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 1999-2018) Rialto and Colton GMZs Santa Ana River Watershed WATER SYSTEMS CONSULTING, INC. File Name: Figure_B12-5_Rialto_and_Colton_T_Change Projection: Transverse Mercator Datum: North American 1983 ### **SAWPA Basin Monitoring Program Task Force** **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 1999-2018) Rialto and Colton GMZs Santa Ana River Watershed Recomputation of Ambient Water Quality for the Period 1999 to 2018 ### **Attachment B13** Riverside-A, -B, -C, -E, and -F GMZs ### **Attachment Contents:** **B13-1 Groundwater Storage and Elevation Contours Fall 2018** B13-2 NO₃-N Concentration and Contour Map **B13-3 TDS Concentration and Contour Map** B13-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B13-5 TDS Concentration Change (1996-2015 to 1999-2018)** ### TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | | | | |--------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------|--|--|--| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | | | Riverside-A | 560 | 560 | 440 | 440 | 440 | 430 | 420 | 440 | 430 | -10 | 130 | | | | | Riverside-B | 290 | 289 | 320 | 310 | 340 | 340 | 340 | 360 | 340 | -20 | None (-50) | | | | | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | | | | Riverside-A | 6.2 | 6.2 | 4.4 | 4.9 | 4.9 | 5.2 | 5.4 | 5.6 | 5.7 | 0.1 | 0.5 | | | | | Riverside-B | 7.6 | 7.6 | 8.0 | 7.8 | 8.3 | 8.4 | 6.7 | 6.6 | 6.5 | -0.1 | 1.1 | | | | ### **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 ### **Attachment Contents:** **B13-1 Groundwater Storage and Elevation Contours Fall 2018** B13-2 NO₃-N Concentration and Contour Map **B13-3 TDS Concentration and Contour Map** B13-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B13-5 TDS Concentration Change (1996-2015 to 1999-2018)** ### TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | | | | |--------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------|--|--|--| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | | | Riverside-C | 680 | 684 | 760 | 750 | 740 | 740 | 730 | ? | ? | ? | ? | | | | | Riverside-E | 720 | 721 | 720 | 700 | 710 | 700 | 740 | 730 | 740 | 10 | None (-20) | | | | | Riverside-F | 660 | 665 | 580 | 570 | 570 | 570 | 560 | 560 | 550 | -10 | 110 | | | | | | | | | | Nitrate as Nitrogen (| (mg/L) | | | | | | | | | | Riverside-C | 8.3 | 8.3 | 15.5 | 15.3 | 15.3 | 14.8 | 14.5 | ? | ? | ? | ? | | | | | Riverside-E | 10.0 | 13.3 | 14.8 | 15.4 | 15.3 | 15.2 | 10.2 | 10.4 | 10.2 | -0.2 | None (-0.19) | | | | | Riverside-F | 9.5 | 12.1 | 9.5 | 10.6 | 10.3 | 10.6 | 10.1 | 10.9 | 10.3 | -0.6 | None (-0.8) | | | | ### **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999
to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B13-1_Riverside_F2018_WL **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B13-2_Riverside_N_grid **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B13-3_Riverside_TDS_grid **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B13-4_Riverside_N_change Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 1999-2018) Riverside A,B,C,E and F GMZs Santa Ana River Watershed Author: EC Date: 3/24/2020 Water Systems Consulting, Inc. File Name: Figure_B13-5_Riverside_TDS_change Coordinate System: NAD 1983 UTM Zone 118 Projection: Transverse Mercator Datum: North American 1983 Units: Meter 2. ### **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 TDS Concentration Change (1996-2015 to 1999-2018) Arlington and Riverside-D GMZs Santa Ana River Watershed Recomputation of Ambient Water Quality for the Period 1999 to 2018 **Attachment B14** San Jacinto GMZ ### **Attachment Contents:** **B14-1 Groundwater Storage and Elevation Contours Fall 2018** **B14-2 NO₃-N Concentration and Contour Map** **B14-3 TDS Concentration and Contour Map** B14-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B14-5 TDS Concentration Change (1996-2015 to 1999-2018)** ### TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | | | | |--------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------|--|--|--| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | | | Perris-North | 570 | 568 | 750 | 780 | 730 | 770 | 760 | 720 | 730 | 10 | None (-160) | | | | | Perris-South | 1260 | 1258 | 3190 | 2200 | 2600 | 2470 | 2400 | 2340 | 2300 | -40 | None (-1040) | | | | | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | | | | Perris-North | 5.2 | 5.2 | 4.7 | 6.7 | 6.5 | 7.4 | 7.3 | 7.4 | 7.8 | 0.4 | None (-2.6) | | | | | Perris-South | 2.5 | 2.5 | 4.9 | 5.9 | 5.5 | 5.8 | 5.8 | 6.0 | 6.0 | 0.0 | None (-3.5) | | | | Recomputation of Ambient Water Quality for the Period 1999 to 2018 ### **Attachment Contents:** **B14-1 Groundwater Storage and Elevation Contours Fall 2018** B14-2 NO₃-N Concentration and Contour Map **B14-3 TDS Concentration and Contour Map** B14-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B14-5 TDS Concentration Change (1996-2015 to 1999-2018) TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from 2015 to 2018 | Assimilative
Capacity | | | | |----------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------|--|--|--| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | | | | Hemet-South | 730 | 732 | 1030 | 850 | 920 | 910 | 940 | 920 | 940 | 20 | None (-210) | | | | | Lakeview/Hemet-North | 520 | 519 | 830 | 840 | 880 | 890 | 860 | 850 | 850 | 0 | None (-330) | | | | | Menifee | 1020 | 1021 | 3360 | 2220 | 2140 | 2050 | 2030 | 1970 | 1960 | -10 | None (-940) | | | | | | | | | ı | Nitrate as Nitrogen (| mg/L) | | | | | | | | | | Hemet-South | 4.1 | 4.1 | 5.2 | 5.4 | 5.5 | 5.2 | 5.7 | 5.7 | 5.5 | -0.2 | None (-1.4) | | | | | Lakeview/Hemet-North | 1.8 | 1.8 | 2.7 | 3.4 | 2.7 | 2.6 | 2.5 | 2.6 | 2.9 | 0.3 | None (-1.1) | | | | | Menifee | 2.8 | 2.8 | 5.4 | 6.0 | 4.7 | 4.4 | 4.6 | 4.5 | 4.8 | 0.3 | None (-2) | | | | **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 AMBIENT WATER QUALITY (1999 TO 2018) Interpretive Tools Summary San Jacinto GMZs Attachment B14 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B14-1_San_Jacinto_F2018_WL 1.25 2.5 Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B14-2_San_Jacinto_N_grid 1.25 2.5 Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B14-3_San_Jacinto_TDS_grid 1.25 2.5 Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 1.25 2.5 Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B14-5_San_Jacinto_T_Change 1.25 2.5 Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 # Attachment B15 San Jacinto Upper and Lower Pressure GMZs ### **Attachment Contents:** **B15-1 Groundwater Storage and Elevation Contours Fall 2018** B15-2 NO₃-N Concentration and Contour Map **B15-3 TDS Concentration and Contour Map** B15-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B15-5 TDS Concentration Change (1996-2015 to 1999-2018)** TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | |-----------------------------|----------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------| | | | | | To | otal Dissolved Solids | : (mg/L) | | | | | | | San Jacinto-Lower | 520 | 520 | 730 | 950 | 810 | 800 | 800 | 780 | 760 | -20 | None (-240) | | San Jacinto-Upper "max | | | | | | | | | | | | | benefit" | 500 | 321 | 370 | 370 | 350 | 350 | 350 | 370 | 350 | -20 | 150 | | San Jacinto-Upper "antideg" | 320 | 321 | 370 | 370 | 350 | 350 | 350 | 370 | 350 | -20 | None (-30) | | | | | | ı | Nitrate as Nitrogen (| (mg/L) | | | | | | | San Jacinto-Lower | 1.0 | 1.0 | 1.9 | 1.8 | 1.2 | 1.1 | 1.1 | 1.5 | 1.7 | 0.2 | None (-0.7) | | San Jacinto-Upper "max | | | | | | | | | | | | | benefit" | 7.0 | 1.4 | 1.9 | 1.7 | 1.6 | 1.5 | 1.4 | 1.6 | 1.1 | -0.5 | 5.9 | | San Jacinto-Upper "antideg" | 1.4 | 1.4 | 1.9 | 1.7 | 1.6 | 1.5 | 1.4 | 1.6 | 1.1 | -0.5 | None (0.3) | ### **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 AMBIENT WATER QUALITY (1999 TO 2018) Interpretive Tools Summary San Jacinto-Upper and –Lower Pressure GMZs Attachment B15 Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Fall 2018 - San Jacinto Pressure GMZ Santa Ana River Watershed Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 San Jacinto Upper and Lower Pressure GMZs Santa Ana River Watershed WATER SYSTEMS CONSULTING, INC. File Name: Figure_B15- Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 # **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 San Jacinto Upper and Lower Pressure GMZs Santa Ana River Watershed WATER SYSTEMS CONSULTING, INC. File Name: Figure_B15- Projection: Transverse Mercator Datum: North American 1983 ### **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 1999-2018) San Jacinto Upper and Lower Pressure Projection: Transverse Mercator Datum: North American 1983 ### **SAWPA Basin Monitoring Program Task Force** **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 1999-2018) San Jacinto Upper and Lower Pressure ### **Attachment B16** San Timoteo GMZ ### **Attachment Contents:** **B16-1 Groundwater Storage and Elevation Contours Fall 2018** **B16-2 NO₃-N Concentration and Contour Map** **B16-3 TDS Concentration and Contour Map** B16-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) B16-5 TDS Concentration Change (1996-2015 to
1999-2018) TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | Ambient Ambient | | 2009 2012
Ambient Ambient
(1990-2009) (1993-2012) | | 2018
Ambient
(1999-2018) | Difference from 2015 to 2018 | Assimilative
Capacity | |---------------------------|----------------------------|--|--------------------------------|--------------------------------|-----------------------|--------|---|-----|--------------------------------|------------------------------|--------------------------| | | | | | To | otal Dissolved Solids | (mg/L) | | | | | | | San Timoteo "max benefit" | 400 | 303 | 300 | ? | ? | 420 | 410 | 420 | 420 | 0 | None (-20) | | San Timoteo "antideg" | 300 | 303 | 300 | ? | ? | 420 | 410 | 420 | 420 | 0 | None (-120) | | | | | | 1 | Nitrate as Nitrogen (| mg/L) | | | | | | | San Timoteo "max benefit" | 5.0 | 2.7 | 2.9 | ? | ? | 0.8 | 2.3 | 2.0 | 1.5 | -0.5 | 3.5 | | San Timoteo "antideg" | 2.7 | 2.7 | 2.9 | ? | ? | 0.8 | 2.3 | 2.0 | 1.5 | -0.5 | 1.2 | **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 File Name: Figure_B16-1_San_Timoteo_F2018_WL Attachment B16-1 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B16-2_San_Timoteo_N_grid **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B16-3_San_Timoteo_TDS_grid **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B16-4_San_Timoteo_N_change Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 1999-2018) San Timoteo GMZ Santa Ana River Watershed WATER SYSTEMS CONSULTING, INC. File Name: Figure_B16-5_San_Timoteo_T_Change Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 ### **Attachment B17** **Temescal GMZ** ### **Attachment Contents:** **B17-1 Groundwater Storage and Elevation Contours Fall 2018** **B17-2 NO₃-N Concentration and Contour Map** **B17-3 TDS Concentration and Contour Map** B17-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B17-5 TDS Concentration Change (1996-2015 to 1999-2018)** ### TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | |--------------------|-------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------| | | Total Dissolved Solids (mg/L) | | | | | | | | | | | | Temescal | 770 | 771 | 780 | 700 | 780 | 790 | 790 | 810 | 810 | 0 | None (-40) | | | Nitrate as Nitrogen (mg/L) | | | | | | | | | | | | Temescal | 10.0 | 11.8 | 13.2 | 12.8 | 12.6 | 12.0 | 10.9 | 10.9 | 10.2 | -0.7 | None (-0.2) | ### **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B17-1_Temescal_F2018_WL ### **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 ### **Attachment B18** Yucaipa GMZ ### **Attachment Contents:** **B18-1 Groundwater Storage and Elevation Contours Fall 2018** B18-2 NO₃-N Concentration and Contour Map **B18-3 TDS Concentration and Contour Map** B18-4 NO₃-N Concentration Change (1996-2015 to 1999-2018) **B18-5 TDS Concentration Change (1996-2015 to 1999-2018)** ### TDS and Nitrate Water Quality Objectives, Ambient Water Quality, and Assimilative Capacity | Management
Zone | Water Quality
Objective | Historical Ambient
(1954-1973) ¹ | 1997
Ambient
(1978-1997) | 2003
Ambient
(1984-2003) | 2006
Ambient
(1987-2006) | 2009
Ambient
(1990-2009) | 2012
Ambient
(1993-2012) | 2015
Ambient
(1996-2015) | 2018
Ambient
(1999-2018) | Difference from
2015 to 2018 | Assimilative
Capacity | |-----------------------|----------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------| | | | | | To | otal Dissolved Solids | (mg/L) | | | | | | | Yucaipa "max benefit" | 370 | 319 | 330 | 310 | 310 | 320 | 320 | 320 | 320 | 0 | 50 | | Yucaipa "antideg" | 320 | 319 | 330 | 310 | 310 | 320 | 320 | 320 | 320 | 0 | 0 | | | | | | / | Nitrate as Nitrogen (| mg/L) | | | | | | | Yucaipa "max benefit" | 5.0 | 4.2 | 5.2 | 5.4 | 5.3 | 6.2 | 6.3 | 6.2 | 5.9 | -0.3 | None (-0.9) | | Yucaipa "antideg" | 4.2 | 4.2 | 5.2 | 5.8 | 5.3 | 6.2 | 6.3 | 6.2 | 5.9 | -0.3 | None (-1.7) | **SAWPA Basin Monitoring Program Task Force** Recomputation of Ambient Water Quality for the Period 1999 to 2018 AMBIENT WATER QUALITY (1999 TO 2018) Interpretive Tools Summary Yucaipa GMZs Attachment B18 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B18-1_Yucaipa_F2018_WL **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B18-2_Yucaipa_N_grid Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 ### **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 File Name: Figure_B18-3_Yucaipa_TDS_grid WATER SYSTEMS CONSULTING, INC. Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator Datum: North American 1983 # **Recomputation of Ambient Water Quality** for the Period 1999 to 2018 WATER SYSTEMS CONSULTING, INC. File Name: Figure_B18-4_Yucaipa_N_change_v2 Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 Projection: Transverse Mercator Datum: North American 1983 Recomputation of Ambient Water Quality for the Period 1999 to 2018 ### **APPENDIX C** # Comments and Responses Appendix C – Comments and Responses to Draft Technical Memorandum Submitted April 15, 2020. Appendix C. Comments and Responses on the Draft Technical Memorandum for the Ambient Water Quality Recomputation for the Period 1999 through 2018 Submitted to the Basin Monitoring Program Task Force on April 16, 2020 | | No. | Page | Reference | Comment | Response | |-------|-----|------|--------------------|--|--| | SAWPA | | | General | The Santa Ana Watershed Project Authority (SAWPA) appreciates this opportunity to review the Draft Recomputation of Ambient Water Quality Report for the Period 1999 – 2018 and has prepared the following comments: | Thank you for the thoughtful comments. Following are our responses, and revisions to the Technical Memorandum, as appropriate. | | SAWPA | 1 | 6 | Section 1.2 | We recommend including an explanation of why the 1997 (1978-1997) values are shown in the following tables. I assume it is a point of reference. | You are correct in that these tables are included as a point-of-reference. The same information: "Water Quality Objective, Historical Ambient, 1997 Ambient, Assimilative Capacity" is included in Tables 3-1 and 3-2, along with the ambient water quality values estimated for the other historical study periods. Tables 1-1 and 1-2 can be deleted to streamline the report. | | SAWPA | 2 | 7 | Table 1-1 (1 of 2) | The value shown for the 1997 ambient for the Menifee appears to be incorrect. "33,60" is shown. | This is a typographical error. The correct number is "3,360." | | | | | | | The following agency was contacted but was inadvertently left off the list of agencies contacted. This agency has been added to the list in the technical memorandum. | | | | | | | Santa Ana Regional Water Quality Control Board (GeoTracker
and GAMA) | | SAWPA | 3 | 13 | | The list of agencies contacted for data appears incomplete as compared to the list of agencies indicated in our original RFP such as various State agencies such as Regional Board and | There was not a follow up for certain agencies specified in the RFP for the collection of water level and water quality data. The following agencies were not contacted, because their data are sourced from other agencies and databases: | | | | | | Federal agencies like USGS.
Please include all agencies contacted. | Cucamonga Valley Water DistrictFontana Union Water District | | | | | | | The following agencies were not contacted, because they do not management groundwater data.: | | | | | | | Riverside County Flood Control and Water Conservation District MS4 Permittees San Bernardino County Flood Control - MS4 Permittees | Appendix C. Comments and Responses on the Draft Technical Memorandum for the Ambient Water Quality Recomputation for the Period 1999 through 2018 Submitted to the Basin Monitoring Program Task Force on April 16, 2020 | | No. | Page | Reference | Comment | Response | |-------|-----|------|-----------|--|---| | | | | | | The agencies listed below, were not in the RFP list, but were contacted by the project team: Beaumont Cherry Valley Water District City of Banning Colton/San Bernardino Regional Tertiary Treatment and Water Reclamation Authority Inland Empire Utilities Agency Irvine Ranch Water District Jurupa Community Services District Western Riverside County Regional Wastewater Authority | | SAWPA | 4 | 16 | | A formula is shown as follows: Calculated TDS = 0.6 (alkalinity) + Na + K + Ca + Cl + SO4 + SiO3 + NO3 + F. This formula was shown in all past [Ambient Water Quality] AWQ reports but a little more explanation is suggested here. Why 0.6? Is this a presumed or reference pH value? What are the units of each constituents? [milligrams per liter] mg/L or [milliequivalents per liter] meq/L? | The four data quality tests include: (1) an anion-cation balance; (2) a comparison of measured and calculated TDS; (3) a comparison of measured EC and the sum of ions; and (4) TDS to EC ratios. These tests are described in Standard Methods for the Examination of Water and Wastewater (e.g., Rice et al., 2017). In the original N/TDS Phase 2A study, the tests from Standard Methods 1992 edition (18th edition) were employed for the QA/QC tests (aka "Checking Analyses' Correctness). The tests have undergone very minor changes since that time. For consistency, the original formulas are still the ones used to date for each AWQ Recomputation. With regard to the "Calculated TDS" formula: This formula is a summation of the major cations – typically calcium, magnesium, sodium, potassium – and major anions – bicarbonate, sulfate, and chloride. Lesser ions contribute much less mass to TDS. These lessor ions are not always analyzed for. The formula for calculated TDS in the 1992 edition is: | Appendix C. Comments and Responses on the Draft Technical Memorandum for the Ambient Water Quality Recomputation for the Period 1999 through 2018 Submitted to the Basin Monitoring Program Task Force on April 16, 2020 | | No. | Page | Reference | Comment | Response | |-------|-----|------|--------------------------------|--|---| | | | | | | The numbers, e.g., 0.61 before (HCO₃⁻ alkalinity) are conversion factors, much like the procedure used to convert nitrate as nitrate to nitrate as nitrogen. A series of tables (Tables 1 through 4) at the end of the response to comment table shows how the conversion factors for nitrate and alkalinity are derived. All concentrations are in milligrams per liter (mg/L). There was a typographical error in the text of the draft Technical memorandum: Mg (magnesium) was left out of the formula in the text (however, it was correctly included in the actual data QA/QC check). | | SAWPA | 5 | 24 | 1st paragraph,
2nd sentence | Please change "smaller circles" to just "circles." | Comment noted and the text has been modified accordingly. | | SAWPA | 6 | 49 | | Shows many links to ArcGIS Online web-based maps. What guarantee does the task force and SAWPA have that these weblinks will always be available indefinitely in the future? | Our recommendation is to have SAWPA manage the "GIS On-Line AWQ Data Explorer," since SAWPA is the Basin Monitoring Program Task Force (BMPTF) Administrator and is a neutral party dedicated to the management of the entire watershed. The Data Explorer utilizes off-the-shelf ArcGIS geographic information tools from ESRI. Our estimate is that "maintaining the Data Explorer would require 10 Gigabytes of storage and a monthly average of four hours of staff time — which, hopefully, can be absorbed by SAWPA's Information Technology (IT) staff. The license for this tool set from ESRI is free up to a limit depending on usage. ArcGIS Online uses a credit system and if the usage for storing and hosting data for public view is high, it may require additional credits. If the IT staff time would be used support for responding to questions on how a typical user would explore the map data. The questions could be asked by phone or through email. Any requests for modifying the tools could be deferred until the next AWQ Recomputation. Alternatively, a member of the BMPTF could also administrator the on-line GIS tools. | | SAWPA | 7 | 51 | | The legend for the wells as shown on page 51 refer to the following two maps, Figure 4-1 and Figure 4-2. I think it would be best to show this legend on both maps rather than on a separate page of text in case they are extracted and | Excellent comment. The key well legend has been added to the top left of each of the maps: Figures 4-1 and 4-2. | Appendix C. Comments and Responses on the Draft Technical Memorandum for the Ambient Water Quality Recomputation for the Period 1999 through 2018 Submitted to the Basin Monitoring Program Task Force on April 16, 2020 | | No. | Page | Reference | Comment | Response | |-------|-----|------------|---|--|--| | | | | | presented. If space is an issue on the existing legend, then a separate and additional legend is suggested in top left corner of each figures. | | | SAWPA | 8 | 54 | 1st paragraph | There appears to be a small yellow box shown in the background of the third line. Not sure of purpose. May need to remove. | Good catch. The small yellow box was a comment to remind ourselves to verify the number of wells in the monitoring program. Number has been verified, and the yellow box has been removed. | | SAWPA | 9 | 59 | | For last bullet, text needs to be moved up alongside last bullet. | Comment noted and the text has been modified accordingly. | | SAWPA | 10 | 60 | | The top of the page starts with a color codes legend.
This may be pertaining to the following two figures, 4-3 and 4-4, and not to each packet under Appendix B. Perhaps a separate heading is needed to clarify this at the top of page 60. | Comment noted. This section was revised for clarity. | | SAWPA | 11 | 63 | last paragraph,
second sentence
and last sentence | Remove reference to "2019" sampling since it is not possible to do so now. | The current text states, "Wells listed for '2019' are already out of the AWQ program unless they were sampled in the last calendar year." In order to emphasize that these wells are no longer eligible to be in the program, unless samples were collected in 2019, the following text was added, "Note that those wells that required a sample result in 2019 in order to remain in the AWQ monitoring program – and that were not sampled in 2019 – are no longer eligible to be in the program." | | SAWPA | 12 | 65 &
67 | Footnote "a." | States that high risk wells will be lost if not sampled before 2018. Since we are now in 2020, we can no longer sample these wells so this footnote needs to be revised. | Comment noted and the footnote has been revised to indicate that these wells should be sampled before the end of 2020 (the year this report is final and available to review) in order to retain these data points for use in the next AWQ recomputation period. | | SAWPA | 13 | 72 | 1st paragraph,
2nd sentence. | Remove extra parentheses at end of sentence. | Comment noted and the extraneous parenthesis has been deleted. | | SAWPA | 14 | 76 &
77 | Figures 4-6 and 4-7 | These maps are labeled "Chino South," but the map also shows "Chino East". Further, the legend shows the symbol line for the groundwater management zone but it doesn't appear on the map. It is unclear what the boundary is | Comment noted. The figure title has been changed to, "Spatial Distribution of Nitrate Concentrations in Chino South and Chino East" Unfortunately, the management zone boundaries are not clear due to the color ramp In the cells in the maps. We have modified the GMZ boundaries so that they | Appendix C. Comments and Responses on the Draft Technical Memorandum for the Ambient Water Quality Recomputation for the Period 1999 through 2018 Submitted to the Basin Monitoring Program Task Force on April 16, 2020 | | No. | Page | Reference | Comment | Response | |-------------------|---|------------|--------------------|---|--| | | | | | between Chino South and Chino East. May be fault line but not clear. | are clear. The Chino South / Chino East demarcation is the east to west fault line in the middle of the figure. | | SAWPA | A 15 Page 79 Figure 4-8 appears to be a com 2012 and 1999-2018 "Comparison betwee shading appears odd | | Figure 4-8 | The figure title states "2012 to 2018", however, the figure appears to be a comparison of two averaging periods 1993-2012 and 1999-2018 so I recommend changing title to "Comparison between 2012 and 2018". Also the graphic color shading appears odd with color shades in large rectangular blocks with little color transition. Worth double-checking. | Comment noted. The title of the figure has been changed to "Location of Selected Monitoring Wells Associated with the Colton Landfill and a Comparison of Nitrate Concentrations by Grid Cells in the Riverside-A GMZ: 2012 to 2018." The shading may look different to what you are used to seeing, because this figure is zoomed to the 400 meter by 400 meter grid cell size. We have added the grid cell boundaries to show this distinction. | | SAWPA | 16 | Page
83 | Recommendation 5.4 | This section seems overly brief and simply suggests reviewing AWQ Conceptual Models and other features without any explanation as to the benefits. Please expand value. This was done in the past for Chino Basin but ultimately was not used. | Thank you for the comment. We have revised the section. | | SAWPA | 17 | 83 | Recommendation 5.5 | I question whether pursuing outside grant funding for additional proposed work is appropriate here in this technical report. I would suggest this section simply be modified to not mention funding but rather just provide suggestions of additional work and describing how each benefit the Task Force. Further, Prop 1 IRWM grant cannot pay for ongoing data collection of this type since it is considered a reoccurring maintenance activity. SAWPA has checked on this already. | Thank you for the comment. We have deleted the reference to Prop 1 IRWM to keep it the focus on grants in general as an option if desired. | | SAWPA | 18 | 83 | Recommendation 5.5 | Last line includes a "9" but should be a parenthesis. | Comment noted. The text has been modified to remove the typographical error. | | City of
Corona | 19 | - | Attachment B | In attachment B Cucamonga is repeated under Elsinore | Comment noted. This has been updated in Attachment B. | | City of
Corona | 20 | - | Attachment B | I would recommend a table of contents that list the management zone for attachment B | Comment noted and thank you for the suggestion. This has been added to Attachment B. | Appendix C. Comments and Responses on the Draft Technical Memorandum for the Ambient Water Quality Recomputation for the Period 1999 through 2018 Submitted to the Basin Monitoring Program Task Force on April 16, 2020 | | No. | Page | Reference | Comment | Response | |-------------------|-----|---------------------------------------|--|--|--| | City of
Corona | 21 | 34,
36,
37,
39,
52,
53 | Figures 3-4, 3-6,
3-7, 3-9, 4-1, and
4-2 | Many of the maps in the tech memo have Riverside-A GMZ in the key but the values in the key do not match the map. | Comment noted. These figures have been updated to reflect the same value in the explanation for Riverside-A to match the value that is displayed on the map. | | OCWD | 22 | 30 | Section 3.1 | The dates in following sentence from page 30 of the report should be2015 and 2018. "Figure 3-9 depicts the changes in nitrate concentrations in groundwater between the2012 and 2015 analyses from two distinct perspectives." | Comment noted. This text has been reviewed and updated. | | OCWD | 23 | 59 | Section 4.4 | Last bullet point on page 59 needed the dates updated to 2015-2018 and a relook at formatting. | Comment noted. This text has been reviewed and updated. | | OCWD | 24 | - | Time series
charts | Well ID conversion key to help determine which wells we are looking at. As you are probably aware OCWD doesn't use a numeric well identification like this. | Comment noted. In the interpretative tools section (4.1, page 49) there are links to view the data on ArcGIS online. Using this tool, you can select the well you would like to learn more about to obtain its well name and well id. Copying the well id from the data viewer online, you can search for this well id in the time series PDF to pull up the time series data. In the future for the next AWQ recompuntation, we hope to have the time series charts also be online so that when viewing the well data on ArcGIS online, you can select a link and pull up the time series chart in a web browser. | | CBWM | 25 | 59 | Section 4.4 | Page 59, fifth bullet: The text appears to be copied from the prior report and needs to be updated for this report. | Comment noted and addressed in comment number 23 above. | | CBWM | 26 | - | Attachment B | Attachment B5 and B6: On the time-series charts for AWQ, the color symbology for the TDS/nitrate objectives should match the color symbology for the TDS/nitrate AWQ computations. | Comment noted. In order to keep the graphs clean and not too crowded, we are representing AWQ objectives using the black dashed line in the legend. Its inferred from the legend that for each AWQ objective that is color coded on the graph is associated with the same matching color AWQ value that corresponds to the associated max benefit and anti-deg values displayed as solid colored lines. | | RWQCB | 27 | 49 | Section 4.1 | Will the interactive maps prepared as Interpretive Tools be available until at least the next Recomputation analysis? In particular, these tools would be
useful for discussions by the | Thank you for the comment. Yes! WSC can continue to host these interactive maps for a longer duration as it is no consequential cost to us to do so. | Appendix C. Comments and Responses on the Draft Technical Memorandum for the Ambient Water Quality Recomputation for the Period 1999 through 2018 Submitted to the Basin Monitoring Program Task Force on April 16, 2020 | | No. | Page | Reference | Comment | Response | |-------|-----|------|---------------|---|--| | | | | | Task Force and the Regional Board and a basin-by-basin analysis in preparation for a declaration of conformance with the State Water Resource Control Board's Recycled Water Policy. | | | RWQCB | 28 | 75 | Section 4.6.2 | "The basin plan amendment that is currently in development proposes to amend Table 4-1 in the Basin Plan to revise the water quality objective for nitrate-nitrogen in the Chino-South GMZ from its current value of 4.2 mg/L to a new value of 5.0 mg/L." Please refer to SARWQCB Resolution No. RB-2017-0036. | Thank you for the comment. The mentioned reference has been added to the references section and to this paragraph to cite the resolution document. | | RWQCB | 29 | - | Attachment B | Please review the contents of Attachment B for completeness and numbering consistency. In particular, the Lake Elsinore management zone analysis is missing. | Comment noted and addressed in comment number 19 above. We have also reviewed the attachment and revised accordingly for consistency. | | | | Table 1. Conve | ersion of nitrat | e as nitrate to nitrate as nitrogen
N | | | | | | | |---------|----------------------------|-----------------------------|-------------------------|--|---------|---------|-------------------------|-------------------------|--|--| | | No. of | | | | | No. of | Ma | ISS | | | | Element | atoms | Atomic Weight grams/mol | Molar Mass
grams/mol | | Element | atoms | Atomic Weight grams/mol | Molar Mass
grams/mol | | | | N | 1 | 14.0067 | 14.0067 | | N | 1 | 14.0067 | 14.0067 | | | | 0 | 3 | 16 | 48 | Мо | lar Mass of NO ₃ | 62.0067 | | | Molar N | lass of nitrogen | 14.0067 | | | | | Ratio NO ₃ to N | | 4.43 | | | | | | | | | | Table 3. Expression of carbonate alkalinity in terms of calcium carbonate | | | | | | | | | | |---------|---|---------------------------------------|------------|--|---------|--------|---------------------------|------------|--|--| | | CO ₃ ² · | | | | CaCO₃ | | | | | | | Element | No. of | Mass | | | Element | No. of | Mass | | | | | Element | atoms | Atomic Weight | Molar Mass | | Element | atoms | Atomic Weight | Molar Mass | | | | | | grams/mol | grams/mol | | | | grams/mol | grams/mol | | | | С | 1 | 12.01 | 12.01 | | Ca | 1 | 40.08 | 40.08 | | | | 0 | 3 | 16 | 48 | | С | 1 | 12.01 | 12.01 | | | | | | | | | 0 | 3 | 16 | 48 | | | | | | | | | | | | | | | | | Molar Mass of HCO ₃ | | 60.01 | | | Molai | Mass of CaCO ₃ | 100.09 | | | | | Ratio | HCO ₃ to CaCO ₃ | 0.60 | | | | | | | | | | Table 2. Expression of bicarbonate alkalinity in terms of calcium carbonate | | | | | | | | | | |--------------------------------|---|---------------------------------------|-------------------|--|-------------------|--------|------------------------------------|-------------------|--|--| | HCO ₃ ⁻¹ | | | | | CaCO ₃ | | | | | | | Element | No. of | Mass | | | Element | No. of | Mass | | | | | Element | atoms | Atomic Weight | Molar Mass | | Lieilleilt | atoms | Atomic Weight | Molar Mass | | | | | | grams/mol | grams/mol | | | | grams/mol | grams/mol | | | | Н | 1 | 1.0079 | 1.0079 | | Ca | 1 | 40.08 | 40.08 | | | | С | 1 | 12.01 | 12.01 | | С | 1 | 12.01 | 12.01 | | | | 0 | 3 | 16 | 48 | | 0 | 3 | 16 | 48 | | | | | | | | | | | | | | | | | Molar Mass of HCO ₃ | | 61.0179 | | | Molar | Molar Mass of CaCO ₃ 10 | | | | | | Ratio | HCO ₃ to CaCO ₃ | 0.61 | | | | | | | | | Table 4. Expression of hydroxide alkalinity in terms of calcium carbonate | | | | | | | | | | | |---|--------------------------------|---------------------------------------|------------|--|-------------------|--------|---------------------------|------------|--|--| | OH. | | | | | CaCO ₃ | | | | | | | Element | No. of | Mas | SS | | Element | No. of | Mass | | | | | | atoms | Atomic Weight | Molar Mass | | Liement | atoms | Atomic Weight | Molar Mass | | | | | | grams/mol | grams/mol | | | | grams/mol | grams/mol | | | | Н | 1 | 1.0079 | 1.0079 | | Ca | 1 | 40.08 | 40.08 | | | | 0 | 1 | 16 | 16 | | С | 1 | 12.01 | 12.01 | | | | | | | | | 0 | 3 | 16 | 48 | | | | | | | | | | | | | | | | | Molar Mass of HCO ₃ | | 17.0079 | | | Molai | Mass of CaCO ₃ | 100.09 | | | | | Ratio | HCO ₃ to CaCO ₃ | 0.17 | | | | | | | | ### Santa Ana Regional Water Quality Control Board June 22, 2020 ### **VIA EMAIL ONLY** Mr. Mark Norton Water Resources & Planning Manager Santa Ana Watershed Project Authority 11615 Sterling Ave. Riverside, CA 92503 mnorton@sawpa.org REGIONAL BOARD COMMENTS ON THE MONITORING PROGRAM TASK FORCE DRAFT TECHNICAL MEMORANDUM "RECOMPUTATION OF AMBIENT WATER QUALITY FOR THE PERIOD 1999 TO 2018" Dear Mr. Norton: The Santa Ana Regional Water Quality Control Board (Regional Board) staff have reviewed the above referenced draft technical memorandum dated April 15, 2020 submitted by Water Systems Consulting, Inc. on behalf of the Santa Ana Watershed Project Authority and the Basin Monitoring Program Task Force (Task Force; BMPTF). In addition to editorial comments made on May 29, 2020, the Regional Board respectfully submits the following response to the recommendations made in the draft technical memorandum for the Task Force's consideration. The State Water Resources Control Board's Water Quality Control Policy for Recycled Water (Recycled Water Policy) was amended effective April 9, 2018. The goal of the Recycled Water Policy is to support water supply diversity and sustainability and to encourage the increased use of recycled water in California. Changes to the Recycled Water Policy include requirements for regional water boards and proponents of recycled water projects across the state to develop salt and nutrient management plans (SNMPs). The Recycled Water Policy is directly influenced and inspired by the cooperative efforts of stakeholders in the Santa Ana Region and the salt and the nutrient management practices developed here. One requirement of the RWP is that the regional water boards, in consultation with stakeholders, shall assess and review monitoring data generated from SNMPs every five years unless an alternate timeline has been established in a basin plan amendment. This assessment shall include an evaluation of: WILLIAM RUH, CHAIR | HOPE SMYTHE, EXECUTIVE OFFICER - observed trends in water quality data as compared with trends predicted in the salt and nutrient management plan; - the ability of the monitoring network to adequately characterize groundwater quality in the basin; - potential new data gaps; - groundwater quality impacts predicted in the salt and nutrient management plan based on most recent trends and any relied-upon models, including an evaluation of the ability of the model to simulate groundwater quality; - available assimilative capacity based on observed trends and most recent water quality data; and - projects that are reasonably foreseeable at the time of this data assessment but may not have been when the salt and nutrient management was prepared or last updated. The Regional Board disagrees with the recommendation that the next ambient water quality computation and assimilative capacity determination be conducted for the period 2006-2025. Salt and nutrient management plans adopted as a Basin Plan amendment prior to April 8, 2019, such as the Santa Ana Region SNMP, shall be evaluated for compliance with the Recycled Water Policy by April 8, 2024. The current Santa Ana River Basin Plan requires triennial reporting of the ambient water quality and assimilative capacity in management zones in the watershed, which is more rigorous than a 5-year schedule. While the Regional Board generally agrees with the recommendation to shift the reporting requirements to more closely match the 5-year schedule described in the RWP, until this evaluation is completed the current triennial SNMP compliance schedule must continue. Therefore, the next recomputation of ambient water quality will evaluate the 20-year period 2002-2021. The Regional Board urges the Task Force to act on those recommendations in the AWQ report that would mitigate potential data gaps and analyze 'hot-spots' as a proactive step to achieve compliance with the RWP requirements. The Regional Board recognizes that the loss of point statistics can have an outsized impact on the ambient water quality determination for a management zone depending on the spatial distribution of monitoring points. Member agencies should take all practicable steps to augment the monitoring networks within their spheres of influence. The Regional Board suggests that the Task Force continue to meet regularly to explore the results depicted by the Interpretive Tools in the above referenced technical memorandum on a basin-by-basin basis, and to discuss Recycled Water Policy compliance
in preparation for the April 2024 evaluation deadline. Periodically updating the physical characteristics of the management zones, including aquifer geometry and storage parameters, is a regulatory priority. The Regional Board is aware of multiple groundwater basin modeling efforts since the last update to the watershed conceptual model (TIN/TDS Phase 2A: TIN/TDS Study of the Santa Ana Watershed, July 2000). The accuracy of our salt and nutrient monitoring program metrics SAWPA - Basin Monitoring Program Task Force has a direct impact on the allocation of assimilative capacity, discharge permit limits, and on the many beneficial uses affected by the active management of groundwater resources in the Santa Ana watershed. Thank you for the opportunity to comment on this draft technical memorandum. The Regional Board values the collaborative efforts of SAWPA and the Basin Monitoring Program Task Force member agencies on this important work. If you have any questions regarding this letter, you may contact me at (951) 782-3219 (eric.lindberg@waterboards.ca.gov). Sincerely, Eric Lindberg PG, CHG Senior Engineering Geologist/Unit Chief Santa Ana Regional Water Quality Control Board ## expect**WSC**.com