Wasteload Allocation Model Review and Recommendations

May 13, 2020

Agenda

Part 1 – Review of Updated Calibration

- Objectives of review
- Scope of review
- Findings
- Part 2 WEI Recommendations for Further Review of WLAM
 - Framework for review
 - HSPF model overview and review examples

OBJECTIVES OF THE REVIEW

- EVMWD and EMWD are updating their Upper Temescal Valley SNMP, including updates of current and projected ambient water quality
- The Regional Board requested that the 2016 WLAM is used for this effort.
- The information from the 2016 WLAM needed to complete these efforts in the Upper Temescal Valley:
 - Surface water discharge and TDS/N concentrations
 - Streambed infiltration volume and TDS/N concentrations

SCOPE OF REVIEW: UPPER TEMESCAL VALLEY STUDY AREA

- Model connection → Are the Warm Springs and Arlington submodels connected?
- Model parameters → What parameters where changed in the models to re-calibrate?
- Streambed Infiltration TDS estimates → Is the post-processing methodology to assign TDS concentrations to the streambed infiltration reasonable?

MODEL CONNECTION

 The two models are connected

WILDERMUTH ENVIRONMENTAL, IN

Comparison of Warm Springs Model Output vs. Arlington Model Input

Streamflow of the Warm Springs Model Outflow, cfs

MODEL PARAMETERS

- > There were no changes to the Warm Springs model.
- The infiltration rate of the following reaches in the Arlington model changes:

Reach No. (Arlington Submodel)	Original Average Infiltration Rate (ft/day)	Revised Average Infiltration Rate (ft/day)
Reach 1	24.2	0.2
Reach 44	0.05	1.6
Reach 46	0.05	1.6
Reach 48	32.2	1.7
Typical values in other Reaches of the Arlington and Warm Springs Models	0.2 -	- 0.5

MODEL PARAMETERS

Reach 44 (location of rising groundwater), 46, and 48 \rightarrow The infiltration rate was increased in Reaches 44 and 46, which are within a bedrock narrows where it is not likely that (1) the infiltration rates are higher than other areas of the Temescal Wash or (2) there is the capacity in the underlying alluvium to accept the recharge. The volume of infiltration is nearly always greater than the rising groundwater volume that is input into Reach 44.

STREAMBED INFILTRATION TDS ESTIMATES

- We do not agree with the proposed methodology used to assign TDS concentration to the streambed infiltration when reaches "dry up" and the model assumes a zero TDS concentration.
- Recommended methodology →
 Use the volume-weighted TDS concentration of the inputs to the surface flow of each reach that's drying up for that specific day. For example, for Reach 19 use:
 - Inflow from Reaches 12 and 18
 - Runoff from Watershed 19
 - EVMWD discharge

USE OF THE WLAM-HSPF FOR THE UPPER TEMESCAL VALLEY SNMP

- The model will be used in the Upper Temescal Valley SNMP Update under the following assumptions:
 - The model results for streamflow and streambed infiltration to the Upper Temescal Valley GMZ (which excludes Reaches 44, 46, and 48) will be used if the Task Force and Regional Board proceed with the WLAM planning runs based on this version of the model calibration.
 - For days where the WLAM model estimates zero TDS concentration for streambed infiltration, the TDS will be estimated based on the volumeweighted TDS concentration of the inputs to the surface flow of each reach that's drying up for that specific day.

AGENDA

Part 1 – Review of Updated Calibration

- Objectives of review
- Scope of review
- Findings
- Part 2 WEI Recommendations for Further Review of WLAM
 - Framework for review
 - HSPF model overview and review examples

How MODELING IS USED TO ASSESS COMPLIANCE WITH BASIN PLAN OBJECTIVES

- The WLAM-HSPF is a numerical surface water model used to estimate the volume and associated TDS and TIN concentration of surface water discharge and streambed infiltration in the Santa Ana River and its tributaries
- The model estimates are used to assess compliance with the following TDS and nitrate Basin Plan objectives:
 - Surface Water: Reaches 2 and 3 of the Santa Ana River
 - Groundwater Management Zones: Beaumont, San Timoteo, Bunker Hill-B, Colton, Riverside-A, Chino South, Upper Temescal Valley, Orange County

MODELS AS WATER RESOURCE PLANNING TOOLS

- Models are a representation of the physical world and are used to help understand how water resources management plans could impact physical processes such a streamflow, groundwater recharge, water quality
- No model will ever perfectly capture the full extent and complexity of physical processes in a hydrogeologic system
- No two modelers will produce the same model; they will have different approaches to building and calibrating that can lead to non-unique, but satisfactory results.
- We use models despite these limitations because they can help us to better understand the hydrogeologic system and are valuable decision-support tools when the limitations of use are understood and acknowledged.

MODEL REVIEW

- Model calibration statistics how well does the model output align with measured observations in the real world?
- Typically there are many areas within a model domain where there are limited or no real world data to make such comparisons
- How else can we review model outputs to assess its ability to represent the physical world, given the limitations?
 - We can use our understanding of the physical system to assess if model results are reasonable in areas where critical evaluations are being made

REVIEW FRAMEWORK FOR WLAM-HSPF

- Focus review on model estimates of surface water flow and streambed infiltration for reaches that overlie the GMZs where compliance evaluations are being performed. What does this approach look like in implementation?
- For the UTV objectives, the following was asked to drive the review process:
 - How does the streamflow and streambed infiltration change across GMZs, particularly at hydrogeologic points of interest, such as the Lee Lake Reservoir? This resulted in identifying the disconnect between the two sub-models.
 - Is the total streambed infiltration volume and associated TDS/N concentration along Temescal Wash reasonable based on our understanding of the local hydrogeologic conditions? This resulted in identifying that the WLAM model was assigning the streambed infiltration a TDS concentration of 0 mgl on certain days when the volume was a non-zero value.

SANTA ANA WATERSHED PROJECT AUTHORITY

SANTA ANA RIVER WASTE LOAD ALLOCATION MODEL UPDATE - SUMMARY REPORT

16

GEOSCIENCE

How does HSPF work?

• Watersheds and reaches

How does HSPF work?

Reach water budget

Watershed water budget

Warm Springs Sub-model (Temescal Wash at Elsinore GMZ boundary → Inflow to Lee Lake Reservoir)

Arlington Sub-model (Lee Lake Reservoir outflow \rightarrow Prado)

							Temescal Gravel Pit
		()			
Elsinore GMZ	Warm Springs Warm Springs	Lee Lake	Lee Lake Reservoir	Lee Lake	Bedford Bedford	Temescal GMZ	

IMPLEMENTATION OF REVIEW

Prepare time history plots of daily streamflow Q, TDS, and N at key locations in each GMZ, including:

• the inflow and outflow points to confirm continuity,

reaches/HSAs where wastewater discharges occur, and

 other points of hydrologic interest (e.g. surface impoundments, bedrock narrows)

IMPLEMENTATION OF REVIEW

Reach-by-reach assessment of streambed infiltration (Q, TDS, N) within each management zone. This could include:

- summary tables of the reach parameters and annual infiltration Q, TDS, N
- time-history plots to assess the daily model output for reaches of interest within a GMZ

	Streambed	Infiltration	Streambed	Infiltration	Streambed	Infiltration					
	in Temescal Wa	sh estimated by	in Temescal V	Wash in TM-6	in Temescal Wash in Final						
WY	W	EI	(Appendi	x A; A-21)	Report						
	Flow	TDS	Flow	TDS	Flow	TDS					
	(afy)	(mgl)	(afy)	(mgl)	(afy)	(mgl)					
2005	9,326	412	9,357	412	9,357	428					
2006	6,753	546	6,776	546	6,776	604					
2007	5,704	519	5,716	519	5,716	645					
2008	4,219	388	4,241	390	4,241	567					
2009	4,300	349	4,328	351	4,328	474					
2010	4,875	330	4,898	331	4,898	408					
2011	7,107	377	7,141	378	7,141	417					
2012	3,475	225	3,490	226	3,490	353					
2013	3,843	267	3,866	269	3,866	429					
2014	2,207	56	2,231	62	2,231	214					
2015	2,666	69	2,692	74	2,692	189					
2016	2,389	45	2,413	51	2,413	203					
Min	2,207	45	2,231	51	2,231	189					
Avg	4,739	299	4,762	301	4,762	411					
Max	9,326	546	9,357	546	9,357	645					

STREAMBED INFILTRATION ALONG TEMESCAL WASH

Reach Number	1	12	19	21	29	37	39	41	45	1	3		7	9	11		13	15		21		39		42	4	4	46	4	8
Tributary Area (ac)	1,082	1,481	3,548	37	373	4,498	12	527	49	629	2,385	1,	560	106	29	1	89	30	0	1,965		91		64	8	1	121	1,9	/02
Cumulative Trib Area (ac)	1,082	7,867	15,443	15,823	19,472	28,758	29,029	29,765	32,409	629	5,454	7,	014	14,533	14,967	22	,282	24,5	24	27,980		32,972	3	7,605	39,5	82	40,637	43,8	811
Description	Temescal Wash	Temescal Wash EMWD Discharge	Temescal Wash EVMWD Discharge	Temescal Wash	Temescal Wash Lee Lake Reservo	Temescal Wa	ash Temeso	al Wash Te	mescal Wash	Temescal Was	h Temes	al Wash	Temesca	l Wash	Temescal W LLWD Disch	Vash arge	Temescal Wash Cor No. 3	Teme	scal Wash	Temesca Rising Gro	al Wash undwater	Temescal Wash	Temesca (include	al Wash Is AAAP)					
WY	Flow TDS (afy) (mgl)	Flow TDS (afy) (mgl)	Flow TDS (afy) (mgl)	Flow TDS (afy) (mgl)	Flow TDS (afy) (mgl)	Flow TDS (afy) (mgl)	Flow TDS (afy) (mgl)	Flow TDS (afy) (mgl)	Flow TDS (afy) (mgl)	Flow TDS (afy) (mgl)	Flow TI (afy) (m	DS Flow Igl) (afy)	TDS Flo (mgl) (a	ow TDS fy) (mgl)	Flow TD (afy) (mg	S Flow I) (afy)	TDS (mgl)	Flow (afy)	TDS (mgl)	Flow 1 (afy) (I	TDS mgl)	Flow TDS (afy) (mgl	Flow (afy)	TDS (mgl)	Flow (afy)	TDS (mgl)	Flow TDS (afy) (mgl)	Flow (afy)	TDS (mgl)
1995	39 22	1 537 145	1,479 658	166 658	468 649	1,212 53	7 48 54	8 728 46	68 236 4	52 1,619 3	34 220	248 345	235	233 188	78	216 32	191	600	166	522	142	109	79 1	178	314	502	502 51	2 3,748	350
1996	50 22	/ 151 40	1,4/6 669	16/ 6/0	468 67	5 1,230 59	51 59	3 65/ 2/	3 65 3	93 263 2	/6 60	206 103	196	92 49	15	136 14	68	132	85	301	29	22	1/	26 115	126	593	220 62	2 1,165	435
1997	50 22	8 159 43	1,4/4 /01	16/ /02	468 /05	1,227 62	51 62	5 /45 45	6 105 3	82 355 2	// /1	201 123	183	94 73	21	144 203	114	218	/6	327	39	30	23	35 114	166	563	297 57	/5 1,467	424
1998	50 21	9 613 234	1,501 583	168 584	4/3 5/0	1,235 50.	2 52 49	9 869 47	6 286 4	50 2,190 3	258	307 431	298	253 219	85	281 35	218	664	216	620	180	126	46 14	10 248	331	401	535 41	4,018	281
1999	50 23	0 153 48	1,4/5 /14	167 /15	469 /10	1,228 648	51 64	9 864 63	188 4	57 386 4	35 56	261 90	246	82 72	14	180 11	83	125	108	400	31	21	59	24 145	80	636	153 65	02 000	548
2000	49 22	2 113 41	1,479 074	107 073	470 080	7 1,231 02	/ <u>51</u> 02	8 841 57	43 145 4	12 202 3	10 45	200 /0	200	02 01	12	140 10	28	217	93	459	24	20	30 47	24 120	114	609	191 02	0 1 222	494
2001	30 22	7 102 42 9 95 40	1,477 697	167 699	4/0 05	1,225 55	4 51 55	4 007 33	122 202 202 202 202 202 202 202 202 202	29 171 21	70 71	230 122	210	104 04	15	147 17	120	217	111	323	25	12	4/ 02	150 150	50	520	102 55	1,222	59
2002	50 22	5 346 74	1 474 622	167 623	463 59	7 1 064 44	39 50	1 595 49	12 147 3	61 597 3	1 111	207 169	197	161 103	30	107 18	93	170	64	685	105	58	94	35 95	181	525	310 55	5 1 959	33
2004	51 23	0 209 326	1,493 691	168 692	471 69	7 1.234 630	52 63	1 728 43	4 148 5	80 732 5	50 97	463 160	463	108 261	28	476 12	269	202	388	714	99	42 4	43 4	19 444	202	665	356 67	1,674	57
2005	51 21	4 885 506	1.566 603	172 604	482 59	5 1.249 54	2 55 54	1 888 52	27 304 5	26 3.752 5	20 464	482 799	482	370 468	169	475 45	434	1.013	437	908	428	240 4	42 20	54 443	510	456	850 46	6,381	35(
2006	50 23	2 595 624	1,536 681	171 681	477 683	2 1,241 655	5 54 65	7 894 65	8 319 6	60 3,038 6	58 307	644 516	647	275 509	100	648 290	573	622	624	875	382	144 (11 10	54 634	328	686	515 69	3,307	63
2007	47 21	3 522 622	1.453 580	136 670	377 67	3 1.031 62	7 43 66	6 699 67	70 248 6	74 2,405 6	58 270	654 474	658	225 588	96	658 270	608	610	631	842	346	189 (26 18	38 583	3 273	707	429 71	3 2,442	705
2008	50 22	6 407 555	1,076 420	71 647	7 192 630	5 726 41	L 21 64	4 332 63	115 6	45 1,367 6	52 179	611 317	614	160 516	63	626 202	506	414	575	587	318	161 (06 14	16 509	245	660	404 66	9 2,413	575
2009	51 22	7 354 400	1,029 284	48 570	136 53	5 662 270	14 55	8 232 54	15 81 5	49 971 5	79 140	524 244	532	138 390	46	550 17:	389	318	498	835	493	222	09 1	57 419	212	652	353 66	52 1,981	55/
2010	51 22	7 369 301	1,066 347	55 554	144 51	5 723 239	9 15 50	0 208 49	95 85 4	29 740 5	56 125	451 209	461	138 271	36	489 220	273	293	363	903	503	232	08 10	58 418	3 229	580	389 59	9 2,471	42
2011	50 22	7 509 306	1,276 534	135 556	381 55	3 1,077 47	7 42 51	5 716 51	6 254 5	15 2,398 5	10 252	422 404	419	261 279	76	399 31	285	547	316	784	276	181 4	58 1	75 428	3 274	518	445 52	3,070	40:
2012	50 23	0 194 273	977 162	33 418	8 89 39	471 17	2 8 41	4 141 38	8 46 4	10 413 40	05 64	343 111	349	80 181	20	349 9	179	143	262	840	286	172	59 8	30 271	116	653	202 67	70 951	558
2013	49 22	7 153 343	899 133	21 513	61 47	5 378 190	6 50	5 101 48	33 5	05 384 54	10 69	437 121	442	74 297	24	437 10	268	173	362	693	173	139 4	63 9	98 403	92	648	159 66	50 761	598
2014	49 21	8 91 51	755 50	8 198	3 24 11	3 304 34	1 3 17	9 42 13	3 12 1	35 101 1	22 27	191 47	198	41 57	8	137 5	49	72	77	626	13	11 :	52 :	13 129	53	557	94 57	73 524	387
2015	50 22	9 126 62	817 78	16 205	6 44 13	3 370 43	L 4 15	5 71 12	26 23 1	29 216 1	L4 46	158 83	160	61 64	15	116 8	57	116	79	714	17	21 :	47 2	24 135	66	459	113 48	36 725	304
2016	51 23	3 89 28	778 34	6 174	20 8	7 322 20	2 16	0 32 9	9 1	08 75 10	05 34	186 58	193	55 52	9	127 74	46	87	72	717	16	14 :	60 :	137	7 54	541	92 58	1 573	359
Min	39 21	3 85 28	755 34	6 174	20 8	7 304 20	2 15	5 32 9	8 9 1	08 75 10	05 27	158 47	160	41 49	8	107 5	46	72	64	301	13	11	94 :	13 95	5 53	401	92 41	435	28
Avg	49 22	5 311 232	1,274 480	116 566	323 54	7 935 432	2 34 51	9 545 46	52 147 4	42 1,042 4	136	349 230	347	142 220	44	319 18	226	315	258	652	180	100	12 9	285	188	582	314 59	8 1,947	465
Max	51 23	3 885 624	1,566 714	172 715	482 718	3 1,249 65	5 55 66	6 894 67	70 319 6	74 3,752 6	58 464	654 799	658	370 588	169	658 45	608	1,013	631	908	503	240 (26 20	54 634	510	707	850 71	6,381	705
																							1						1
										· ·								• • •							•			· ·	

*Note that TDS is based on the model output and does not include the post-processing required.

STREAMBED INFILTRATION ALONG TEMESCAL WASH

Reach Number	1		1	2	19					
Tributary Area (ac)	1,0	82	1,4	81	3,548					
Cumulative Trib Area (ac)	1,0	82	7,8	67	15,443					
Description	Temesca	al Wash	Temesca EMWD D	al Wash ischarge	Temescal Wash EVMWD Discharge					
WY	Flow (afy)	TDS (mgl)	Flow (afy)	TDS (mgl)	Flow (afy)	TDS (mgl)				
1995	39	221	537	145	1,479	658				
1996	50	227	151	40	1,476	669				
1997	50	228	159	43	1,474	701				
1998	50	219	613	234	1,501	583				
1999	50	230	153	48	1,475	714				
2000	49	222	113	41	1,479	674				
2001	50	227	182	42	1,477	654				
2002	49	229	85	40	1,472	697				
2003	50	225	346	74	1,474	622				
2004	51	230	209	326	1,493	691				
2005	51	214	885	506	1,566	603				
2006	50	232	595	624	1,536	681				
2007	47	213	522	622	1,453	580				
2008	50	226	407	555	1,076	420				
2009	51	227	354	400	1,029	284				
2010	51	227	369	301	1,066	347				
2011	50	227	509	306	1,276	534				
2012	50	230	194	273	977	162				
2013	49	227	153	343	899	133				
2014	49	218	91	51	755	50				
2015	50	229	126	62	817	78				
2016	51	233	89	28	778	34				
Min	39	213	85	28	755	34				
Avg	49	225	311	232	1,274	480				
Max	51	233	885	624	1,566	714				

*Note that TDS is based on the model output and does not include the postprocessing required.

SUMMARY

- Schematics, charts, and tables similar to those prepared for the UTV SNMP could readily be assembled for other GMZs from the model input and output files
- The exhibits can be reviewed by the Task Force members and other overlying agencies and experts in the local hydrogeology of the GMZs to assess if (1) obvious errors exist and (2) the results reasonably represent the GMZ.
- A finding that the representation of a GMZ is not fully reasonable does not mean the WLAM could not move forward to completion, but it would enable the Task Force to: highlight limitations in the use of the model and identify areas where additional monitoring and/or studies are needed to improve future versions of the model.

END

