

Recomputation of Ambient Water Quality in the Santa Ana River Watershed

BMPTF: November 13, 2019

Ambient Water Quality Phases

1: Data Gathering

- ✓ Data Compilation
- ✓ QA/QC, Process, and Upload recent data

2: Point Statistics

- ✓ Calculate Water Quality Point Statistics
- ✓ Shapiro-Wilk Test for Normality

3: Computations

- ✓ Groundwater Elevation Contours
- ✓ Nitrate, TDS Concentrations
- Compute ambient water quality for GMZ's

4: Interpretive Tools ✓ Innovative Interpretive Tool

2: Point Statistics

- Annualized Averages
- At least 3 years of water quality (TDS or NO3-N) in 20-year period
- Shapiro Wilk test for normality
- Point Statistics mean plus t*standard error of the mean

Nitrate Example

Well ID: 1203926

Well ID		Longitude	Well Name 🎽	Well Owner ¹	Groundwater Manageme Zone	nt Number of	Number of Accepted Samples ³	Number of Annualized Average Concentration Values	# of outliers (ie, rejected annualized average conc values)	Mean of Annual Average Concentration Values	Normal Distribution of Data ⁴	Shapiro Wilk Test Result ^s	Standard Error Mean/Standard Error Geometric Mean	Standard Deviation	tValue	Statistic = [Mean Concentration + tValue * Standard Erro	2015 Final Value ⁶	2015 Method Outcon <mark></mark> *	2018 Final Value ⁶	2018 Method Outcome	Status Change 🎽	Percent Chang 🕶	Percent Chan	Absolute Percent Chan _f	Absolute Percent Rank
1203926	34.00538935	-117.2876524	Highgrove HG-3	Riverside County Waste Managemen	t Depa Riverside-F	40	40	20	0	2.63	NO	FAIL	NA	3.49	NA		3.59	Median	0.08	Median	Average - No Change	-98%	-98%	98%	0.973

Point Statistics Web Map

TDS Example

Well ID: 1203926

Well ID 🔄	Latitude	Longitude	Well Name	Well Owner ¹	Groundwater Management Zone	Number of Samples ²	Number of Accepted Samples ³	Annualized Average Concentration	outliers Mean (ie, Average rejected	an of Annual ce Concentration Norm Values	nal Distribution of Data ⁴	Shapiro Wilk Test Result ⁵	Mean/Standard Error Geometric Mean	Standard Deviation	tValue	= [Mean Concentratio n + tValue *	2015 Final Value ⁶	2015 Method Outcome	2018 Final Value	Method Outcome	Status Change	Percent Change	Percent Change	Absolute % Change	Absolute Percent Rank
14465	33.69755913	-117.994906	OCWD-M42/1	Orange County Wate	Orange County	29	29	15	0	1157	YES	PASS	246.92	956.33	1.03	1411	1674	Mean + SE (UCL84)	1411	Mean + SE (UCL84)	Statistic - No Change	16%	-16%	16%	0.966

Trend Analysis Mann-Kendall Test

The Mann-Kendall test is applied to determine if there is a significant trend in water quality (increasing, no trend, or decreasing) for up to 20 annualized average values within the 2018 AWQ recomputation dataset.

A very significant increasing trend does not necessarily mean that the trend has a high positive slope or that the concentrations are high; it means only that the trend is monotonically increasing.

- Significantly Increasing
- Increasing
- No Trend
- Decreasing
- Significantly Decreasing
- Very Significantly Decreasing

Well Attrition Analysis

High Risk Point Statistic

Wells with computed water quality point statistics that will not qualify for inclusion in the next recomputation (2002 to 2021) of AWQ if no data are collected during 2019-2021.

Medium Risk Point Statistic

Wells with computed water quality point statistics that will not qualify for inclusion in the following recomputation (2005 to 2024) of AWQ if no data are collected during 2019-2024.

New Point Statistics

Wells that are now eligible to have a water quality point statistic computed for the 2018 current AWQ recomputation period.

• Potential Point Statistic

Wells that will be eligible to have a water quality point statistic computed for the next period (2002 to 2021), if a sample is collected and analyzed in the 2019 to 2021 period.

Review of Nitrate and TDS AWQ Maps (1999-2018)

FTP Site to view and QA/QC Maps

Schedule

Near-term Schedule

QUESTIONS?

