MSAR WATERSHED TMDL TASK FORCE

MSAR Bacteria Synoptic Study Project Update October 22, 2019

Richard Meyerhoff, *GEI Consultants* Steven Wolosoff, *CDM Smith* Menu Leddy, *Essential Environmental & Engineering Systems*

ACKNOWLEDGMENTS

- Riverside County Flood Control & Water Conservation District Data collection at Santa Ana River, Tier 1 and Tier 2 sites in Riverside County
- San Bernardino County Flood Control District Data collection at Tier 1 & Tier 2 sites in San Bernardino County
- POTWs Collection of weekly effluent sample for *Bacteroides* analysis
 - Inland Empire Utilities District
 - Riverside Regional Water Quality Control Plant
 - City of San Bernardino Municipal Water Department
 - City of Rialto
- CWE/CDM Smith Coordinate routine Regional Bacteria Monitoring Program sample collection at compliance sites with this Study

MSAR SYNOPTIC STUDY

- Study Objectives
- Study Design

SYNOPTIC STUDY OBJECTIVES

Characterize Current Conditions

- Characterize the current concentration of *E. col*i bacteria in impaired waters
- Characterize the flows and *E. coli* concentrations discharged into the impaired waters from all major tributaries
- Use Microbial Source Tracking techniques to determine the extent to which human sources (as measured by *Bacteroides*) may or may not be contributing to elevated *E. coli*
- Confirm what specific areas of the MSAR watershed have been hydrologically-disconnected from impaired waters during dry weather conditions

SYNOPTIC STUDY OBJECTIVES

• Evaluate Changes Over Time

- Evaluate/quantify the degree to which dry weather urban flows have declined in the time since the TMDL was approved in 2005
- Characterize any significant changes in the concentration and mass of bacteria that have occurred during the period of TMDL implementation
- Estimate the net change in bacterial mass loads associated with the reduction in dry weather flows discharged from the MS4
- Update and revise the bacteria mass balance analyses
- Update the Risk-Based Prioritization Score for Tier 1 sites and summarize how scores have changed since the previous 2013 ranking

SYNOPTIC STUDY OBJECTIVES

Compliance Evaluations

- Determine whether the estimated bacterial load reductions described in the CBRPs have been achieved and evaluate the net effect of the actual reductions achieved on receiving water quality at compliance sites
- Update the estimated load reductions required to achieve compliance with:
 - *E. coli* targets in the 2005-adopted TMDL; and
 - New *E. coli* objectives adopted by the State Water Board in 2018

DATA COLLECTION

- Sample Period Weekly samples collected over six-week period from week of July 29 through week of September 2
- Data Collection activities
 - Flow measurement
 - Field measurements (temperature, dissolved oxygen, pH, conductivity, turbidity)
 - Water samples collected for *E. coli* and *Bacteroides* analysis
 - Site photographs/field observations
- Laboratories
 - Babcock Laboratories E. coli
 - Orange County Public Health Laboratory Bacteroides

STUDY SITES

- 4 TMDL Compliance Sites
- 3 Mainstem Sites
- 14 Tier 1 Sites
- 2 Tier 2 Sites
- 5 POTW Sites

COMPLIANCE SIT<u>ES</u>

- WW-S1 (MWD Crossing)
- WW-S4 (Pedley Avenue)
- WW-M6 (Mill-Cucamonga Creek)
- WW-C7 (Chino Creek)

10/22/2019

MAINSTEM SITES

- PBC-3 (SAR 4 abv Riverside Ave Bridge)
- MISSION (SAR 3 at Mission Blvd)
- 64THST (SAR 3 at 64th Street)

POTWS

- Weekly
 Bacteroides
 samples collected
- Total coliform assumed to be compliant with effluent limit (e.g., weekly average < 2.2 MPN/100 mL)
- Effluent flow data provided

10/22/2019

PRELIMINARY RESULTS (OCTOBER 22, 2019)

- Flow Measurements
 - Methods
 - Comparisons between 2012 and 2019
 - CBRP Dry Weather Flow Targets
- E. coli at Tier 1 outfalls
 - Concentrations and Loads
 - Comparisons between 2012 and 2019
- Source Contribution Analysis
 - Blended Flow Analysis
 - Comparisons between 2012 and 2019

- Santa Ana River Findings
 - Role of Non-MS4 Sources of E. coli
 - Hole Lake
- Chino Creek Findings
 - Imported Water Turnout 2016
 - Channel Resuspension
- Preliminary Bacteroides Results
 - First sample week

PRELIMINARY RESULTS

• Flow Measurements

FLOW MEASUREMENT METHODS

- To support mass balance analysis during dry weather, implemented more accurate methods than previously deployed, i.e., 10%, 50%, 90% cross-sectional measurement approach
- Volumetric methods are most accurate where feasible (i.e., bucket and stopwatch)
 Petrofitted flood barriers
 - Retrofitted flood barriers
- Acoustic doppler velocity meter used for larger flows and unlined segments

FLOW MEASUREMENT RESULTS

- Sum of inflows from upstream Tier 1 sites
- Measurements showed lower week to week variability than in prior Tier 1 studies
- Elevated flows on 9/3/19 in Chino Creek associated with non-MS4 discharge

FLOW MEASUREMENT RESULTS

- All Tier 1 sites showed a reduction in average dry weather flow in 2019 as compared to 2012
- All other Tier 1 outfalls upstream of compliance sites were dry

Measured flow from T1-SACH on 9/3/19 not included in average because of a broken valve upstream of the site that caused an atypical increase in flow

CBRP COMPLIANCE METRIC: DRY WEATHER FLOW REDUCTION

• Source: Table 3-4. San Bernardino County MS4 Program CBRP

Compliance Monitoring Location	Chino Creek at Central Ave	Mill-Cucamonga Creek at Chino-Corona Rd	Total
Hydrologically Connected Drainage (total acres)	17,678	5,510	23,188
Bacteria Reduction Target from MS4 (billion cfu/day)	37	71	107
Approximate Target DWF Reduction (gal/day) ¹	767,082	1,481,465	2,248,548
BMP Implementation necessary to provide target DWF Red	luction (irrigated acres r	managed) ²	
Enforce water conservation ordinances ^{3,6}	1,743	3,367	5,110
Replace grass with artificial turf ⁴	1,534	2,963	4,497
Replace grass with native plants ⁴	1,534	2,963	4,497
Installation of a WBIC 5	1,826	3,527	5,354
Landscape irrigation audit ^{3,6}	1,743	3,367	5,110
Enhanced Sweeping ^{4,7,8}	21,420	41,440	62,860
WQMP with redevelopment ⁴	1,534	2,963	4,497
Regional structural controls ⁴	1,534	2,963	4,497

CBRP COMPLIANCE METRIC: DRY WEATHER FLOW REDUCTION

• Source: Table 3-4. Riverside County MS4 Program CBRP

Compliance Monitoring Location	Santa Ana River at MWD Crossing	Santa Ana River at Pedley Ave	Total
Hydrologically Connected Drainage (total acres)	10,700	17,900	28,600
Bacteria Reduction Target from MS4 (billion cfu/day)	15	10	24
Approximate Target DWF Reduction (gal/day) ¹	305,000	206,000	512,000
BMP Implementation necessary to provide target DWF Reduction (irrigated acres managed) ²			
Enforce water conservation ordinances 3,6	690	470	1,160
Replace grass with artificial turf ⁴	610	410	1,020
Replace grass with native plants ⁴	610	410	1,020
Installation of a WBIC 5	730	490	1,220
Landscape irrigation audit ^{3,6}	690	470	1,160
Enhanced Sweeping ^{4,7,8}	8,540	5,740	14,280
WQMP with redevelopment ⁴	610	410	1,020
Regional structural controls ⁴	610	410	1,020

CBRP COMPLIANCE METRIC: DRY WEATHER FLOW REDUCTION

 Dry weather flow reduction targets in CBRPs have been met

PRELIMINARY RESULTS

• *E. coli* - Tier 1 Sites

TIER 1 SITES - E. COLI CONCENTRATIONS

- Study limited Tier 1 sample locations to sites that accounted for more than 99% of bacteria load in 2012
- Concentrations generally similar to 2012, except for a sharp rise at two sites:
 - Magnolia Center Storm
 Drain (MCSD)
 - Lake Los Serrano Channel (LLSC)

TIER 1 SITES - E. COLI LOADS

- Lower variability in load than flow and concentration
- Average of six events to be used in prioritization

TIER 1 SITE LOADS – 2012 VS. 2019 DRY SEASON

• E. coli load from Tier 1 outfalls as a whole to impaired waters is declining

WEEKLY VARIABILITY IN E. COLI LOAD AMONG TIER 1 SITES

• Tier 1 MS4 outfalls with the highest *E. coli* load vary week to week in all of the impaired waters

Compliance Site	7/31/2019	8/7/2019	8/14/2019	8/21/2019	8/28/2019	9/4/2019
WW-C7	BRSC	CHINOCRK	СССН	CHINOCRK	CHINOCRK	CHINOCRK
WW-S1	SNCH	SNCH	MCSD	MCSD	MCSD	MCSD
WW-S4	SSCH	SSCH	ANZA	DAY	ANZA	SSCH

PRELIMINARY RESULTS

Source Contribution Analysis

SOURCE CONTRIBUTION ANALYSIS TASK

- Source contribution analysis compares MS4 + POTW inflows with downstream monitoring sites
 - Completed in 2010, 2013, and 2016
 - Updated for 2019
- Difference between upstream inflows and downstream conditions from new sources and natural decay

WEEKLY BALANCE – SANTA ANA RIVER AT MWD CROSSING

- Results suggest persistent non-MS4 source of *E. coli*
- Similar blend of inflows between 2012 and 2019 despite 50% decline in effluent

WEEKLY BALANCE – SANTA ANA RIVER AT PEDLEY AVENUE

- Results suggest persistent non-MS4 source of E. coli
- Similar blend of inflows between 2012 and 2019 despite 50% decline in effluent

WEEKLY BALANCE – CHINO CREEK

- Chino Creek results suggest a net decay from inflows to downstream (i.e., non-MS4 sources may be negligible)
- Measured concentration at WW-C7 close to 2012 levels, but higher than expected bacteria from blend of inflows with zero POTW effluent in 2019 dry season

DECLINING POTW EFFLUENT DISCHARGES

Challenge of declining POTW discharges

SOURCE CONTRIBUTION ANALYSIS FINDINGS

PRELIMINARY RESULTS

• Santa Ana River Findings

ROLE OF NON-MS4 SOURCES

- Unique opportunity in Santa Ana River Reach 4 to quantify non-MS4 *E. coli* sources to MSAR during dry weather
- Two sites sampled upstream of any MS4 contributions

ROLE OF NON-MS4 SOURCES

- Unique opportunity in Santa Ana River Reach 4 to quantify contribution of non-MS4 *E. coli* sources to MSAR during dry weather conditions
- Median load to Mission Bridge site ~200 billion MPN/day
- Median total MS4 load to entire MSAR ~100 billion MPN/day

500 450 400 350 E. coli (mpn/100mL) 300 250 200 150 100 50 0 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Cumulative Probability

E. coli in MSAR from Upstream Non-MS4 Sources

DEMONSTRATION THROUGH LONGITUDINAL PROFILES

• What role do non-MS4 sources (abv. Mission Avenue) play in expected blend of inflow calculation?

37

WEEKLY BALANCE – SANTA ANA RIVER AT MWD CROSSING

 River water quality is insensitive to temporal variability in MS4 loads

CHANGES BETWEEN MWD CROSSING AND PEDLEY AVENUE COMPLIANCE SITES

- Downstream site generally lower *E. coli* concentration
- Riverside Regional WQCP effluent dilution effect greater than influence of new MS4 inflows and non-MS4 sources

ANZA DRAIN SUBWATERSHED - TIER 2 RESULTS

 Samples upstream of Hole Lake generally higher than downstream (homeless encampment cleanup on 8/21/19)

ANZA DRAIN SUBWATERSHED -TIER 2 RESULTS

- Monroe Basin outflow *E.coli* load ~12 billion MPN/day (Arlington Greenbelt Study 2018)
- *E.coli* load ~7 billion MPN/day estimated at Tier 1 site ANZA Drain (2019)
- Flow from Arlington Greenbelt is important to Anza loads

PRELIMINARY RESULTS

Chino Creek Findings

CHANNEL RESUSPENSION IS A KEY FACTOR

 San Bernardino County Flood Control District special study conducted in 2016 during Metropolitan Water District water turnout

Туре	Period	Volume (AF)	Average Flow (cfs)
MWD turnout at OC59	6/1/16 - 9/1/16	12,780	73

CHANNEL RESUSPENSION IS A KEY FACTOR

• Revisit 2016 dry season longitudinal survey during MWD turnout

CHANNEL RESUSPENSION IS A KEY FACTOR

- Mass balance for average conditions in July to September 2016 during MWD turnout in San Antonio Channel (T1-SACH)
- 95% of load unaccounted for

Site	Flow (cfs)	Concentration (MPN/100 mL)	Load (Billion MPN/day)		
Downstream					
WW-C7	66.8	298	487.6		
Inflows					
OC59	73.4	2	3.6		
SACH	73.4	9	16.6		
CHINOCRK	0.5	256	3.3		
BRSC	0.1	1205	3.8		
СССН	0.5	65	0.7		
LLSC	0.003	522	0.03		
Other non-MS4 source (btw SACH and WW-C7)			463.0		

MSAR SYNOPTIC STUDY

• Bacteroides Analysis

BACTEROIDES ANALYSIS USING QPCR

- Orange County Public Health Laboratory (OCPHL) to perform qPCR testing for Bacteroides, HF183 Human marker (EPA method 1696)
- OCPHL Update
 - Approximately, 174 grab water samples have been filtered by OCPHL
 - For greater resolution & sensitivity, 200+ mL of water filtered
 - Filters are stored frozen
 - DNA extraction & qPCR analysis is underway
 - All controls & standards are run with each sample
- qPCR Data
 - Results will be provided as Non-Detect/Detect; positive samples will determine DNA copy number/reaction that will be converted to DNA copy number/200 mL (or per filtered volume)
 - Any samples with uncertainty can be re-run using qPCR/droplet digital PCR (ddPCR)

BACTEROIDES - QPCR PRELIMINARY RESULTS FOR WEEK OF JULY 29

Site Category	Site ID	Site Description	Result (DL=10 copies/2 μL)	Quantity (DNA copies/reaction)
	WW-C7	Chino Creek at Central Ave	ND	
Compliance	WW-M6	Mill-Cucamonga Creek	ND	
Sites	WW-S1	SAR at Pedley Avenue	ND	
	WW-S4	SAR at MWD Crossing	ND	
	64THST	SAR at 64th St	ND	1.08
Mainstom SAP	MISSION	SAR at Mission Blvd	ND	
Wainstem SAR	P3-SBC1	SAR Reach 4 abv S. Riverside Ave Bridge	ND	
	CCWRP	IEUA Carbon Canyon Water Recycling Plant effluent	ND	
POTW	Rialto WWTP	Rialto WWTP effluent	ND	
	Riverside RWQCP	Riverside Regional Water Quality Control Plant effluent	ND	
	RIX	Rapid Infiltration and Extraction Facility effluent	ND	
10/22/2019	RP-1	IEUA Regional Water Recycling Plant No. 1 effluent	ND	4

BACTEROIDES - QPCR PRELIMINARY RESULTS FOR WEEK OF JULY 29

Site Category	Site ID	Site Description	Result (DL=10 copies/2 μL)	Quantity (DNA copies/reaction)
	T1-ANZA	Anza Drain	ND	
	T1-BRSC	Boys Republic South Channel	ND	1.2
	T1-BXSP	Box Springs Channel	ND	8.07
	T1-CCCH	Carbon Canyon Creek Channel	ND	
	T1-CHINOCRK	Chino Creek upstream of San Antonio Channel	ND	3.77
	T1-CUCAMONGA	Cucamonga Creek at Hellman	ND	
	Т1-СҮР	Cypress Channel	Dry	
her 1	1 T1-DAY Day Creek	Day Creek	ND	
	T1-LLSC	Lake Los Serranos Channel	ND	
	T1-MCSD	Magnolia Center Storm Drain	Detected	279.19
	T1-PHNX	Phoenix Storm Drain	ND	
	T1-SACH	San Antonio Channel	ND	
	T1-SNCH	Sunnyslope Channel	ND	5.63
	T1-SSCH	San Sevaine Channel	ND	
	T2-CYP2	Cypress Channel upstream of CIM's ag fields	ND	
Tier 2	T2-HOLE	Anza Drain upstream of Hole Lake	ND	

MSAR SYNOPTIC STUDY

• Next Steps

SYNOPTIC STUDY REPORT PREPARATION

- Continue to receive/review Bacteroides data (remainder expected by end of October)
- Complete all data analyses
- Prepare draft TMDL
 Triennial Report for Task
 Force review

Study Plan Schedule

Task	Complete By
Final Study Plan, QAPP and Final Cost Estimates	July 15, 2019
Data Collection	Week of July 29 through the week of September 2, 2019
Progress Report with Presentation to Task Force	October 15, 2019
Draft TMDL Triennial Report	November 15, 2019
Final TMDL Triennial Report	January 15, 2020
Submit Final Report to Santa Ana Water Board	February 15, 2020

Discussion

2019. 8.21 11:47

QPCR EXPLANATION

QPCR EXPLANATION

10/22/2019